Citation: ZHAO Xin-Hong, WEN Juan-Juan, CHEN Jing, ZHAO Jiang-Bo, QI Yong-Dong, LI Gui-Xian. Ionothermal Synthesis of Hierarchical Structured CuAPO-5 Molecular Sieve[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 29-36. doi: 10.11862/CJIC.2015.003 shu

Ionothermal Synthesis of Hierarchical Structured CuAPO-5 Molecular Sieve

  • Corresponding author: ZHAO Xin-Hong, 
  • Received Date: 12 May 2014
    Available Online: 6 October 2014

    Fund Project: 国家自然科学基金(No.21306072) (No.21306072)红柳青年(No.201113)资助项目 (No.201113)

  • Hierarchical structured CuAPO-5 molecular sieve has been ionothermally synthesized by microwave irradiation and using eutectic mixture based on succinic acid, choline chloride and tetraethyl ammonium bromide as solvent and template. The effects of the ratio of P2O5/Al2O3, HF/Al2O3 and CuO/Al2O3, aluminum and copper sources on the crystallization of CuAPO-5 were systematically investigated. The resulting CuAPO-5 molecular sieve was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and N2 physical adsorption-desorption, respectively. SEM analysis reveals that CuAPO-5 molecular sieve with hexagonal nanometer-disc morphology can be synthesized under specific synthesis conditions. N2 physisorption, SEM and TEM characterizations show that the resultant material is one kind of hierarchical structured aluminophosphate molecular sieve possesses both micropore and mesopore.
  • 加载中
    1. [1]

      [1] XU Ru-Ren(徐如人), PANG Wen-Qin(庞文琴), YU Ji-Hong (于吉红), et al. Chemistry-Zeolites and Porous Materials(分 子筛与多孔材料化学). Beijing: Science Press, 2004:15-19

    2. [2]

      [2] Chen L H, Tang Y, Xiao F S, et al. J. Mater. Chem., 2012, 22:17381-17403

    3. [3]

      [3] Hua Z L, Zhou J, Shi J L. Chem. Commun., 2011,47(38): 10536-10547

    4. [4]

      [4] Naydenov V, Tosheva L, Antzutkin O N, et al. Microporous Mesoporous Mater., 2005,78(2/3):181-188

    5. [5]

      [5] Egeblad K, Kustova M, Klitgaard S K, et al. Microporous Mesoporous Mater., 2007,101(1/2):214-223

    6. [6]

      [6] Yang X M, Lu T L, Chen C, et al. Microporous Mesoporous Mater., 2011,144(1/2/3):176-182

    7. [7]

      [7] Choi M, Srivastava R, Ryoo R. Chem. Commun., 2006(42): 4380-4382

    8. [8]

      [8] Kim J, Bhattacharjee S, Ahn W S, et al. New J. Chem., 2010,34(12):2971-2978

    9. [9]

      [9] Danilina N, Krumeich F, van Bokhoven J A. J. Catal., 2010, 272(1):37-43

    10. [10]

      [10] Fan Y, Xiao H, Shi G, et al. J. Catal., 2012,285(1):251-259

    11. [11]

      [11] Alicia M S, Manuel S S, Pedro M G, et al. Microporous Mesoporous Mater., 2010,131(1/2/3):331-341

    12. [12]

      [12] Kanchana U, Sujitra W. Microporous Mesoporous Mater., 2010,135(1/2/3):116-123

    13. [13]

      [13] Zhao X H, Chen J, Sun Z P, et al. Microporous Mesoporous Mater., 2013,182:8-15

    14. [14]

      [14] Dang T T H, Zubowa H L, Bentrup U, et al. Microporous Mesoporous Mater., 2009,123:209-220

    15. [15]

      [15] HE Ye(何月), DONG Mei(董梅), Li Jun-Fen(李俊汾), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2010,26(5):1305-1310

    16. [16]

      [16] Wan Y, Williams C D, Duke C V A, et al. J. Mater. Chem., 2000,10:2857-2862

    17. [17]

      [17] Zhao X H, Wang H, Li G X, et al. Microporous Mesoporous Mater., 2012,151:56-63

    18. [18]

      [18] Wragg D S, Slawin A M Z, Morris R E. Solid State Sci., 2009, 11(2):411-416

    19. [19]

      [19] Oliver S, Kuperman A, Ozin G A. Angew. Chem., Int. Ed. Engl., 1998,37(1/2):46-62

    20. [20]

      [20] Hentit H, Bachari K, Ouali M S, et al. J. Mol. Catal. A: Chem., 2007,275(1/2):158-166

    21. [21]

      [21] Tian D Y, Yan W F, Cao X J, et al. Chem. Mater., 2008,20: 2160-2164

    22. [22]

      [22] Tian D Y, Yan W F, Wang Z X, et al. Cryst. Growth Des., 2009,9(3):1411-1414

    23. [23]

      [23] Danilina N, Castelanelli S A, Troussard E, et al. Catal. Today, 2011,168(1):80-85

    24. [24]

      [24] Murthy K, Kulkarni S J, Masthan S K. Microporous Mesoporous Mater., 2001,43(2):201-209

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(527)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return