Citation: ZHANG Xue-Qiao, TIAN Hao-Qi, YE Zhi-Xiang, CHEN Yao-Qiang. BaO Modified Pd-Based Catalysts: Synthesis by Impregnation/Co-Precipitation and Application in Gasoline-Methanol Exhaust Purification[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 166-176. doi: 10.11862/CJIC.2015.002 shu

BaO Modified Pd-Based Catalysts: Synthesis by Impregnation/Co-Precipitation and Application in Gasoline-Methanol Exhaust Purification

  • Corresponding author: CHEN Yao-Qiang, 
  • Received Date: 24 April 2014
    Available Online: 8 September 2014

    Fund Project: 国家自然科学基金(No.51408076,11405113) (No.51408076,11405113)四川省教育厅重点科研基金(No.14ZA0163) (No.14ZA0163)成都信息工程学院科研人才基金(No.J201416)资助项目. (No.J201416)

  • Barium oxide was developed to modify palladium catalysts supported on CeO2-ZrO2-La2O3-Al2O3 (CZLA) compound oxides by impregnation/co-precipitation methods. Low temperature N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the influence of the preparation method on physicochemical properties of the catalyst. Catalytic activity performance for methanol, CO, C3H8 and NO conversion was evaluated. Catalytic activity results show that the addition of BaO has a positive effect on the conversion of all pollutants, and the best results are achieved by the impregnation method. The light-off temperature decreases by 43, 31, 45 and 35 ℃, respectively. The XRD, H2-TPR and XPS results confirm that the impregnation method is mainly based on the surface modification. The enrichment of Ba2+ strengthens the Pd-Ce interaction in Pd-Ce interface, promoting the reductive ability, thus increasing the catalytic activity at low temperature. The co-precipitation method results in structure disorder and additional anion vacancies accompanied by the formation of more Ce3+, which may be beneficial to the conversion of CO.
  • 加载中
    1. [1]

      [1] Kowalewicz A, Wojtyniak M. Proc. Inst. Mech. Eng. J. Autom. Eng., 2005,219:103-125

    2. [2]

      [2] Cenk S, Kadir U, Mustafa C. Renew. Energy, 2008,33:1314 -1323

    3. [3]

      [3] McCabe R W, Mitchell P J. Appl. Catal., 1986,27:83-98

    4. [4]

      [4] Mondelli C, Santo D V, Trovarelli A, et al. Catal. Today, 2006,113:81-86

    5. [5]

      [5] Monte D R, Kaspar J, Fornasiero P, et al. Inorg. Chim. Acta, 2002,334:318-326

    6. [6]

      [6] Kenevey K, Valdivieso F, Soustelle M, et al. Appl. Catal. B: Environ., 2001,29:93-101

    7. [7]

      [7] Liotta L F, Longoa A, Macaluso A, et al. Appl. Catal. B: Environ., 2004,48:133-149

    8. [8]

      [8] Magdalena K, Elbieta T, Bogusaw M, et al. Appl. Catal. A: General, 2012,445-446:280-286

    9. [9]

      [9] Hungría A B, Browning N D, Erni R P, et al. J. Catal., 2005,235:251-61

    10. [10]

      [10] Osorio G P, Moyado S F, Petranovskii V, et al. Catal. Lett., 2006,1/2:110-116

    11. [11]

      [11] Vidmar P, Fornasiero P, KaŠpar J, et al. J. Catal., 1997,171: 160-168

    12. [12]

      [12] Tanja K, Ulla L, Katariina R T, et al. Appl. Catal. A: General, 2006,298:65-72

    13. [13]

      [13] Groppi G, Cristiani C, Lietti L, et al. Catal. Today, 1999,50: 399-412

    14. [14]

      [14] Atribak I, Bueno L A, García G A. J. Catal., 2008,259:123-132

    15. [15]

      [15] Martínez A A, Fernández G M, Hungría A B, et al. Catal. Today, 2007,126:90-105

    16. [16]

      [16] Thammachart M, Meeyoo V, Risksomboon T, et al. Catal. Today, 2001,68:53-60

    17. [17]

      [17] Damyanova S, Bueno J M C. Appl. Catal. A: General, 2003, 253:135-141

    18. [18]

      [18] Laurent S, Forge D, Port M, et al. Chem. Rev., 2008,108: 2064-2067

    19. [19]

      [19] Corbos E C, Courtois X, Bion N, et al. Appl. Catal. B: Environ., 2008,80:62-71

    20. [20]

      [20] Li G F, Wang Q Y, Zhao B, et al. J. Mol. Catal. A: Chem., 2010,326:69-74

    21. [21]

      [21] Corbos E C, Courtois X, Bion N, et al. Appl. Catal. B: Environ., 2007,76:357-367

    22. [22]

      [22] Piacentini M, Maciejewski M, Baiker A. Appl. Catal. B: Environ., 2006,66:126-136

    23. [23]

      [23] Sun K P, Lu W W, Wang M, et al. Appl. Catal. A: General, 2004,268:107-113

    24. [24]

      [24] Wang Q Y, Li G F, Zhao B, et al. J. Hazard. Mater., 2011,189:150-157

    25. [25]

      [25] Yamazaki S, Matsui T, Ohashi T, et al. Solid State Ionics, 2000,136-137:913-919

    26. [26]

      [26] Mikulova J, Rossignol S, Gerard F, et al. J. Solid State Chem., 2006,179:2511-2519

    27. [27]

      [27] Feio L S F, Hori C E, Damyanova S, et al. Appl. Catal. A: General, 2007,316:107-116

    28. [28]

      [28] HE Shen-Nan(何胜楠), SHI Zhong-Hua(史忠华), CHEN Yao-Qiang(陈耀强), et al. Acta Phys.-Chim. Sin.(物理化学 学报), 2011,27(5):1157-1162

    29. [29]

      [29] Voogt E H, Mens A J M, Gijzeman O L J, et al. Surf. Sci., 1996,350:21-31

    30. [30]

      [30] YAO Yan-Ling(姚艳玲), FANG Rui-Mei(方瑞梅), SHI Zhong-Hua(史忠华), et al. Chin. J. Catal.(催化学报), 2011,32:589-594

    31. [31]

      [31] Zhao M, Li X, Zhang L H, et al. Catal. Today, 2011,175: 430-434

    32. [32]

      [32] Larachi F, Pierre J, Adnot A, et al. Appl. Surf. Sci., 2002, 195:236-245

    33. [33]

      [33] Hungría A B, Fernández G M, Anderson J A, et al. J. Catal., 2005,235:262-271

    34. [34]

      [34] Wang J A, Aguilar R G, Wang R. Appl. Surf. Sci., 1999, 147:44-51

    35. [35]

      [35] Corbos E C, Courtois X, Bion N, et al. Appl. Catal. B: Environ., 2007,76:357-367

    36. [36]

      [36] Luo Y J, Xiao Y H, Cai G H, et al. Fuel, 2012,93:533-538

    37. [37]

      [37] Arosio F, Colussi S, Trovarelli A, et al. Appl. Catal. B: Environ., 2008,80:335-342

    38. [38]

      [38] Armor J N. Catal. Today, 1996,31:191-198

    39. [39]

      [39] Yang M, Li Y P, Wang J, et al. J. Catal., 2010,271:228-238

    40. [40]

      [40] Tanja K, Ulla L, Katariina R T, et al. Appl. Catal. A: General, 2006,298:65-72

    41. [41]

      [41] Peng N, Zhou J F, Chen S H, et al. J. Rare Earths, 2012,30: 342-349

    42. [42]

      [42] Fernández G M, Martnez A A, Iglesias J A, et al. Appl. Catal. B: Environ., 2001,31:39-50

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(1)
  • Abstract views(458)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return