Citation: DONG Li-Jun, LIU Yao, JI Xue-Mei, WEI Ya-Bo, XU Qing-Hong. Effect of Metal Ion on Conversion from M2+/Fe2+/Fe3+/LDHs to Spinel Ferrites under Mild Conditions[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1119-1127. doi: 10.11862/CJIC.2014.172 shu

Effect of Metal Ion on Conversion from M2+/Fe2+/Fe3+/LDHs to Spinel Ferrites under Mild Conditions

  • Received Date: 31 October 2013
    Available Online: 17 January 2014

    Fund Project: 国家自然科学基金(No.U1362113);教育部科技创新基金的支持(No.pt2012112)资助项目。 (No.U1362113);教育部科技创新基金的支持(No.pt2012112)

  • The Effect of divalent metal ion was studied on conversion of M2+/Fe2+/Fe3+-LDHs (M=Co, Ni, Mn, Zn) to spinel ferrites under mild conditions (below 100 ℃ in open air). The results show that the conversion is not only affected by aging temperature but also by position of M2+ in periodic table of elements. Large radius of M2+ ions will result in much easier formation of spinel ferrites from LDH microcrystallines when these ions are in the same period and close to each other. Also the existence of Fe2+ plays an important role in the process, and the conversion could not happen without participation of Fe2+ under the conditions studied.
  • 加载中
    1. [1]

      [1] Song Q, Zhang Z J. J. Am. Chem. Soc., 2012, 134:10182-10190

    2. [2]

      [2] Nejati K, Zabihi R. Chem. Cent. J., 2012, 23:1-6

    3. [3]

      [3] TIAN Ming-Bo(田民波). Magnetic Materials(磁性材料). Beijing: Tsinghua University Press, 2001.

    4. [4]

      [4] Widatallah H M, Al-Mamari F S A, Al-Saqri N A M, et al. Mater. Chem. Phys., 2013, 140:97-103

    5. [5]

      [5] Chen D, Zhang Y Z, Chen B Y, et al. Ind. Eng. Chem. Res., 2013, 52:14179-14184

    6. [6]

      [6] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291:2115-2117

    7. [7]

      [7] Lagarec K, Rancourt D G. Recoil-Möbauer Spectral Analysis Software for Windows, Version 1.02, Department of Physics, University of Ottawa, Ottawa, 1998.

    8. [8]

      [8] Gherca D, Cornei N, Mentre O, et al. Appl. Surf. Sci., 2013, 10:9-18

    9. [9]

      [9] Yan K, Wu X, An X, Xie X M. J. Alloys Compd., 2013, 552: 405-408

    10. [10]

      [10] Horvath M P. J. Magn. Magn. Mater., 2000, 215:171-183

    11. [11]

      [11] Adams J D, David L E, Dionne G F, et al. Microwave Theory Tech., 2002, 50:721-737

    12. [12]

      [12] Zhou Z H, Xue J M, Wang J. J. Appl. Phys., 2002, 91:6015-6020

    13. [13]

      [13] Yu S H, Yoshimura M. Adv. Funct. Mater., 2002, 12:9-15

    14. [14]

      [14] Pileni M P. Adv. Funct. Mater., 2001, 11:323-331

    15. [15]

      [15] Kulkarni R G, Joshi H H. J. Solid State Chem., 1986, 64: 141-147

    16. [16]

      [16] Willey R J, Oliver S A, Oliveri G, et al. Mater. Res., 1993, 8:1418-1427

    17. [17]

      [17] Zhou J, Ma J F, Sun C, et al. J. Am. Ceram. Soc., 2005, 88: 3535-3537

    18. [18]

      [18] Gheisari K, Shahriari S, Javadpour. J. Alloys Compd., 2013, 552:146-151

    19. [19]

      [19] Jiang J, Yang Y M, Li L C. J. Alloys Compd., 2008, 464: 370-373

    20. [20]

      [20] Randhawa B S, Dosanjh H S, Kaur M. J. Ceram. Inter., 2009, 35(3):1045-1049

    21. [21]

      [21] (a)Rives V. Layered Double Hydroxides: Present and Future, New York: Nova Science Publishers, 2001.

    22. [22]

      (b)Cavani F, Trifiro F, Vaccari A. Catal. Today, 1991, 11:173-301

    23. [23]

      [22] Vucelic M, Jones W, Moggridge G D. Clays Clay Miner., 1997, 45:803-813

    24. [24]

      [23] Iwasaki T, Shimizu K, Nakamura H, et al. Mater. Lett., 2012, 68:406-408

    25. [25]

      [24] Arco M D, Malet P, Trujillano R, et al. Chem. Mater., 1999, 11:624-633

    26. [26]

      [25] Li F, Liu J J, Evans D G, et al. Chem. Mater., 2004, 16: 1597-1602

    27. [27]

      [26] Xu Q H, Wei Y B, Liu Y, et al. Solid State Sci., 2009, 11: 472-478

    28. [28]

      [27] HUANG Jing-Jing(黄菁菁), XU Zu-Shun(徐祖顺), YI Chang-Feng(易昌凤). J. Hubei Univ.(湖北大学学报:自然科学 版), 2007, 29(1):50-52

    29. [29]

      [28] Sun G, Sun L, Wen H, et al. J. Phys. Chem. B, 2006, 110: 13375-13380

    30. [30]

      [29] Gotic M, Nagy I C, Popovic S, et al. Magn. Lett., 1998, 78: 193-201

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(380)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return