Citation: ZHAO Bin, LI Nian-Wu, LU Hong-Ling, LIN Zi-Xia, ZHENG Ming-Bo. Mesoporous Carbon Nanofiber-Sulfur Cathode for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 733-740. doi: 10.11862/CJIC.2014.151 shu

Mesoporous Carbon Nanofiber-Sulfur Cathode for Lithium-Sulfur Batteries

  • Corresponding author: LI Nian-Wu,  ZHENG Ming-Bo, 
  • Received Date: 24 November 2013
    Available Online: 12 January 2014

    Fund Project: 国家自然科学基金(No.51202106)资助项目。 (No.51202106)

  • Rechargeable lithium-sulfur batteries' commercial applications are still hindered by some major basic obstacles, such as the low electrical conductivity of sulfur and polysulfides, the dissolution of lithium polysulfides in organic electrolyte, and the volume expansion of sulfur during discharge. In this study, a mesoporous carbon nanofiber (MCNF) with graphitic pore wall prepared by an easy self-template strategy was designed to encapsulate sulfur and polysulfides in the carbon framework. The one-dimensional MCNF with graphitic pore wall can provide an effective conductive network for sulfur and polysulfides during cycling. The small mesopore of MCNF can also restrain the diffusion of long-chain polysulfides. Furthermore, MNCF with high volume can encapsulate a relatively high amount of sulfur and provide internal void space to accommodate volume expansion during discharge. The resulting MCNF-sulfur nanocomposite shows high and stable specific capacities of 820 mAh·g-1 after 100 cycles at a rate of 0.8 A·g-1.
  • 加载中
    1. [1]

      [1] Ji X L, Nazar L F. J. Mater. Chem., 2010, 20:9821-9826

    2. [2]

      [2] Bruce P G, Freunberger S A, Tarascon J M, et al. Nat. Mater., 2012, 11:19-29

    3. [3]

      [3] Evers S, Nazar L F. Accounts Chem. Res., 2013, 46:1135-1143

    4. [4]

      [4] Manthiram A, Fu Y Z, Su Y S. Accounts Chem. Res., 2013, 46:1125-1134

    5. [5]

      [5] Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42:3018 -3032

    6. [6]

      [6] Tao X Y, Chen F, Xia Y, et al. Chem. Commun., 2013, 49: 4513-4515

    7. [7]

      [7] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151:A1969-A1976

    8. [8]

      [8] Li N W, Zheng M B, Lu H L, et al. Chem. Commun., 2012, 48:4106-4108

    9. [9]

      [9] Wu F, Chen J Z, Chen R J, et al. J. Phys. Chem. C, 2011, 115:6057-6063

    10. [10]

      [10] Fu Y Z, Manthiram A. RSC Adv., 2012, 2:5927-5929

    11. [11]

      [11] Xiao L F, Cao Y L, Xiao J, et al. Adv. Mater., 2012, 24: 1176-1181

    12. [12]

      [12] ZHENG Jia-Fei(郑加飞), ZHENG Ming-Bo(郑明波), LI Nian-Wu(李念武), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2013, 29(7):1355-1360

    13. [13]

      [13] MAO Yan(毛艳), ZHANG Chuan-Hui(张传辉), ZHANG Yang(张洋), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29(5):889-895

    14. [14]

      [14] Zhang C F, Wu H B, Yuan C Z, et al. Angew. Chem. Int. Edit., 2012, 51:9592-9595

    15. [15]

      [15] Cao Y L, Li X L, Aksay I A, et al. Phys. Chem. Chem. Phys., 2011, 13:7660-7665

    16. [16]

      [16] Zhang F F, Zhang X B, Dong Y H, et al. J. Mater. Chem., 2012, 22:11452-11454

    17. [17]

      [17] Wang H L, Yang Y, Liang Y Y, et al. Nano Lett., 2011, 11: 2644-2647

    18. [18]

      [18] Jin J, Wen Z Y, Ma G Q, et al. RSC Adv., 2013, 3:2558-2560

    19. [19]

      [19] Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8:500-506

    20. [20]

      [20] Yang Y, Yu G H, et al. ACS Nano, 2011, 5:9187-9193

    21. [21]

      [21] Li G C, Li G R, Ye S H, et al. Adv. Energy Mater., 2012, 2: 1238-1245

    22. [22]

      [22] Lee K T, Black R, Yim T, et al. Adv. Energy Mater., 2012, 2:1490-1496

    23. [23]

      [23] Ji X L, Evers S, Black R, et al. Nat. Commun., 2011, 2:325

    24. [24]

      [24] Evers S, Yim T, Nazar L F. J. Phys. Chem. C, 2012, 116: 19653-19658

    25. [25]

      [25] Shin E S, Kim K, Oh S H, et al. Chem. Commun., 2013, 49: 2004-2006

    26. [26]

      [26] Suo L M, Hu Y S, Li H, et al. Nat. Commun., 2013, 4:1481

    27. [27]

      [27] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009, 21: 4724-4730

    28. [28]

      [28] Xin S, Gu L, Zhao N H, et al. J. Am. Chem. Soc., 2012, 134: 18510-18513

    29. [29]

      [29] Kim J, Lee D J, Jung H G, et al. Adv. Funct. Mater., 2013, 23:1076-1080

    30. [30]

      [30] Schuster J, He G, Mandlmeier B, et al. Angew. Chem. Int. Ed., 2012, 51:3591-3595

    31. [31]

      [31] He G, Ji X L, Nazar L. Energ. Environ. Sci., 2011, 4:2878-2883

    32. [32]

      [32] Tao X Y, Chen X Y, Xia Y, et al. J. Mater. Chem. A, 2013, 1:3295-3301

    33. [33]

      [33] Zheng G Y, Yang Y, Cha J J, et al. Nano Lett., 2011, 11: 4462-4467

    34. [34]

      [34] Guo J C, Xu Y H, Wang C S. Nano Lett., 2011, 11:4288-4294

    35. [35]

      [35] Ji L W, Rao M M, Aloni S, et al. Energ. Environ. Sci., 2011, 4:5053-5059

    36. [36]

      [36] Elazari R, Salitra G, Garsuch A, et al. Adv. Mater., 2011, 23:5641-5644

    37. [37]

      [37] Li W, Zhang F, Dou Y Q, et al. Adv. Energy Mater., 2011, 1:382-386

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(392)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return