Citation: Abdalla M Khedr, Mohamed Gaber, Khalil M Saad-allah. Synthesis, Characterization and Antimicrobial Efficiency of Some Zirconyl(Ⅱ) Complexes Involving O, N-Donor Environment of Triazole-Based Azodyes[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1201-1211. doi: 10.11862/CJIC.2014.150 shu

Synthesis, Characterization and Antimicrobial Efficiency of Some Zirconyl(Ⅱ) Complexes Involving O, N-Donor Environment of Triazole-Based Azodyes

  • Received Date: 25 October 2013
    Available Online: 2 January 2014

  • Nine zirconyl(Ⅱ) complexes of 3-(2-hydroxynaph-1-ylazo)-1,2,4-triazole (HL1), 3-(2,4-dihydroxyphen-1-ylazo)-1,2,4-triazole (HL2), 3-(2-hydroxy-3-carboxynaph-1-ylazo)-1,2,4-triazole (HL3), 3-(2-hydroxy-5-bromophen-1-ylazo)-1,2,4-triazole (HL4) and 3-(2-hydroxy-5-methylphen-1-ylazo)-1,2,4-triazole (HL5) have been synthesized and characterized by elemental analysis, molar conductance, magnetic moment and spectroscopic data (IR, electronic and 1H-NMR) as well as thermal analyses (TGAand DTA). The results show that HL1-HL5 coordinate to zirconyl(Ⅱ) ions as bidentate monobasic ligands through the azo nitrogen and the oxygen of hydroxyl group yielding mononuclear complexes. The biological activity of the ligands and their complexes were studied on four Gram-negative bacteria Escherichia coli, Serratia marcescens, Enterobacter cloacae and Proteus vulgaris and two Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus as well as two fungi Candida albicans and Aspergillus niger. The minimum inhibitory concentrations (MICs) of the prepared compounds were determined by agar diffusion assay using filter paper disc diffusion method. In most cases, metallization increases the antimicrobial activity compared with the free ligand.
  • 加载中
    1. [1]

      [1] Ispir E. Dyes Pigm., 2009, 82:13-19

    2. [2]

      [2] Nejati K, Rezvani Z, Massoumi B. Dyes Pigm., 2007, 75:653-657

    3. [3]

      [3] Guleman N N, Rollas S, Erdeniz H, et al. J. Pharm. Sci., 2001, 26:1-12

    4. [4]

      [4] Awad I M A. Phosphorus, Sulfur Silicon Relat. Elem., 1996, 114:17-28

    5. [5]

      [5] Khedr A M. Chem. Anal. (Warsaw), 2009, 54:783-793

    6. [6]

      [6] Khedr A M, Gaber M. Inorg. Chem. (Ind. J.), 2008, 3:175-181

    7. [7]

      [7] Khedr A M. Chem. Pap.-Chem. Zvesti, 2008, 60:541-546

    8. [8]

      [8] Gaber M, Hassanien A M, Rehab A F, et al. Egypt. J. Chem., 2006, 3:431-438

    9. [9]

      [9] Khedr A M, Gaber M. Spectrosc. Lett., 2005, 38:431-445

    10. [10]

      [10] Khedr A M, Gaber M, Issa R M, et al. Dyes Pigm., 2005, 67: 117-126

    11. [11]

      [11] Amin A S, Mohammed T Y, Mousa A A. Spectrchim. Acta A, 2003, 59:2577-2584

    12. [12]

      [12] Vicente S, Manisso N, Queiroz Z F, et al. Talanta, 2002, 57: 475-480

    13. [13]

      [13] Karpinska J, Kulikowska M. J. Pharm. Biomed. Anal., 2002, 29:153-158

    14. [14]

      [14] Li Z, Pan J, Tang X. Anal. Biomed. Chem., 2002, 374: 1125-1131

    15. [15]

      [15] Zaporozhets O, Petruniock N, Bessarabova O, et al. Talanta, 1999, 49:899-906

    16. [16]

      [16] Visser A E, Swatloski R P, Griffin S T, et al. Spec. Sci. Technol., 2001, 36:785-804

    17. [17]

      [17] Lee W, Lee S E, Lee C H, et al. Microchem. J., 2001, 70: 195-203

    18. [18]

      [18] Chen J, Teo K C. Anal. Chem. Acta, 2001, 434:325-330

    19. [19]

      [19] Karipcin F, Dede B, Percin S, et al. Dyes Pigm., 2009, 84: 14-18

    20. [20]

      [20] Cheng Y, Zhang M, Yang H, et al. Dyes Pigm., 2008, 76: 775-783

    21. [21]

      [21] Nashihara H. Coord. Chem. Rev., 2005, 249:1468-1473

    22. [22]

      [22] Muraoka T, Kinbara K, Kobayashi Y, et al. J. Am. Chem. Soc., 2003, 125:5612-5613

    23. [23]

      [23] Natansohn A, Rochon P. Chem. Rev., 2002, 102:4139-4175

    24. [24]

      [24] Khedr A M, Gaber M, Abd El-Zaher E H. Chin. J. Chem., 2011, 29:1124-1132

    25. [25]

      [25] Al-Soud Y A, Al-Dweri M N, Al-Masoudi N A. Il Farmaco, 2004, 59:775-783

    26. [26]

      [26] Turan-Zitouni G, Kaplanckh Z A, Yldz M T, et al. Eur. J. Med. Chem., 2005, 40:607-613

    27. [27]

      [27] Jalilian A R, Sattari S, Bineshmarvasti M, et al. Arch. Pharm., 2000, 333:347-354

    28. [28]

      [28] Bagihalli G B, Avaji P G, Patil S A, et al. Eur. J. Med. Chem., 2008, 43:2639-2649

    29. [29]

      [29] Holla B S, Veeredra B, Shivanda M K, et al. Eur. J. Med. Chem., 2003, 38:759-764

    30. [30]

      [30] Kapalcikli Z A, Zitoungi G T, Ozdemir A, et al. Eur. J. Med. Chem., 2008, 43:155-159

    31. [31]

      [31] Pomarnacka E, Kedra I K. Il Farmaco, 2003, 58:423-429

    32. [32]

      [32] Tozkoparan B, Kupeli E, Yeilada E, et al. Bioorg. Med. Chem., 2007, 15:1808-1814

    33. [33]

      [33] Labanauskas L, Udrenaite E, Gaidelis P, et al. Il Farmaco, 2004, 59:255-259

    34. [34]

      [34] Zahajska L, Klimesova V, Koci J, et al. Arch. Pharm., 2004, 337:549-555

    35. [35]

      [35] Foroumadi A, Mansouri S, Kiani Z, et al. Eur. J. Med. Chem., 2003, 38:851-854

    36. [36]

      [36] Badr S M, Barwa R M. Bioorg. Med. Chem., 2011, 19:4506-4512

    37. [37]

      [37] Singh K, Barwa M S, Tyagi P. Eur. J. Med. Chem., 2006, 41: 147-153

    38. [38]

      [38] Bhat K S, Poojary B, Prasad D J, et al. Eur. J. Med. Chem., 2009, 44:5066-5070

    39. [39]

      [39] Li Z, Gu Z, Yin K, et al. Eur. J. Med. Chem., 2009, 44: 4716-4720

    40. [40]

      [40] Banerjee P, Pandey O P, Sengupta S K. Transition Met. Chem., 2008, 33:1047-1052

    41. [41]

      [41] Ghassemzadeh M, Fallahnedjad L, Heravi M M, et al. Polyhedron, 2008, 27:1655-1664

    42. [42]

      [42] enery S, Era A, entürk O S, et al. J. Coord. Chem., 2008, 61: 740-749

    43. [43]

      [43] Bekircan O, Byklolu Z, Acar I, et al. J. Organomet. Chem., 2008, 693:3425-3429

    44. [44]

      [44] Gaber M, El-Baradie K Y, El-SAyed Y S Y. Spectrochim. Acta A, 2008, 69:534-541

    45. [45]

      [45] Gaber M, Hassanein A M, Lotfalla A A. J. Mol. Struct., 2008, 875:322-334

    46. [46]

      [46] Gaber M, Mansour I A, El-SAyed Y S Y. Spectrochim. Acta A, 2007, 68:305-311

    47. [47]

      [47] Gaber M, Fayed T A, El-Daly S, et al. Spectrochim. Acta A, 2007, 68:169-175

    48. [48]

      [48] Khedr A M. Chem. Pap.-Chem. Zvesti, 2006, 60:138-142

    49. [49]

      [49] Gaber M, Ayad M M, El-SAyed Y S Y. Spectrochim. Acta A, 2005, 62:694-702

    50. [50]

      [50] Khedr A M. Egypt. J. Anal. Chem., 2005, 14:100-116

    51. [51]

      [51] EL-Baradie K Y, Issa R M, Gaber M. Ind. J. Chem., 2004, 43:1126-1130

    52. [52]

      [52] Patel H S, Oza K K. E-J. Chem., 2009, 6:371-376

    53. [53]

      [53] Gaber M, Hassanein M, Ahmed H A. Ind. J. Tex. Res., 1986, 11:48-53

    54. [54]

      [54] Carcelli M, Ianelli S, Pelogatti P, et al. Inorg. Chim. Acta, 2005, 358:903-911

    55. [55]

      [55] Pridham T G, Lindenfelser L A, Shotwell O L, et al. Phytopathology, 1956, 46:568-575

    56. [56]

      [56] Collee G J, Duguid J P, Farser A G, et al. Practical Medical Microbiology. New York:Churchill Livingstone, 1989.

    57. [57]

      [57] Hsueh P R, Chang J C, Teng L J, et al. J. Clin. Microbiol., 1997, 35:1021-1023

    58. [58]

      [58] Tas E, Aslanoglu M, Kilic A, et al. J. Chem. Res.(s), 2006: 242-245

    59. [59]

      [59] El-Tabl A S, El-Saied F A, Al-Hakimi A N. Transition Met. Chem., 2007, 32:689-701

    60. [60]

      [60] El-Tabl A S. Transition Met. Chem., 1997, 22:400-412

    61. [61]

      [61] Maurya R C, Patel P. Spectrosc. Lett., 1999, 32:213-236

    62. [62]

      [62] El-Wakeil N, Khedr A M, Mansour R. Chin. J. Chem., 2010, 28:463-470

    63. [63]

      [63] Yadava H D S, Senguptya S K, Tripathi S C. Inorg. Chem. Acta, 1987, 128:1-6

    64. [64]

      [64] Cukuravali A, Yilmaz I, Kirbag S. Transition Met. Chem., 2006, 31:207-214

    65. [65]

      [65] Dash D C, Mahapatra A, Naik P, et al. J. Korean Chem. Soc., 2011, 55:412-423

    66. [66]

      [66] Khedr A M, Draz D F. J. Coord. Chem., 2010, 63:1418-1429

    67. [67]

      [67] Chaudhry S C, Verma C, Bhatt S S, et al. Synth. React. Inorg. Met.-Org. Chem., 2004, 34:1031-1042

    68. [68]

      [68] Badea M, Emandi A, Marinescu D, et al. J. Therm. Anal. Calorim., 2003, 72:525-531

    69. [69]

      [69] House J E. Thermochim. Acta, 1980, 40:225-336

    70. [70]

      [70] Azizi N, Saidi M R. Tetrahedron, 2003, 59:5329-5332

    71. [71]

      [71] Palaska E, Sahin G, Kelicen P, et al. Il Farmaco, 2002, 57: 101-107

    72. [72]

      [72] Srivastava R S. Inorg. Chim. Acta, 1981, 56:165-168

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(268)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return