Citation: WU Chen, XUE Li-Sha, Li Tian-Yi, ZHANG Song, ZHENG You-Xuan. Color Tuning of Iridium Complexes by Using Conjugative Effect of Pyridine-derived Cyclometalated Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 969-976. doi: 10.11862/CJIC.2014.146 shu

Color Tuning of Iridium Complexes by Using Conjugative Effect of Pyridine-derived Cyclometalated Ligands

  • Received Date: 12 December 2013
    Available Online: 6 January 2014

    Fund Project: 南京大学创新训练(No.G1210284036) (No.G1210284036)国家自然科学基金(No.20971067)资助项目。 (No.20971067)

  • Using pyridine-derived cyclometalated ligands and tetraphenylimidodiphosphinate (Htpip) ancillary ligand, three iridium complexes of Ir(ppy)2tpip (Hppy=2-phenylpyridine), Ir(npy)2tpip (Hnpy=2-(naphthalene-1-yl)pyridine) and Ir(pnpy)2tpip (Hpnpy=2-(phenathren-9-yl)pyridine) were synthesized. Their structures were deter-mined by 1H NMR, MS(MALDI-TOF), and the complex Ir(ppy)2tpip was also characterized by crystal structure analysis. Extended π conjugation in cyclometalated ligands leads to narrower bandgap resulting in the red shift emission from 516 nm to 600, 633 nm (from green to red). Consequently, when the cyclometalated ligands change from ppy to npy and pnpy, the quantum efficiencies of the complexes are also improved to 0.36, 0.51 and 0.53, respectively. The conjugative effect of the aromatic rings affects the electron density of heterocycle pyridine and thus increases the energy of LUM Oas evidenced by the spectroscopic data and the computational calculation results. The regular patterns between the ligand structure and the emission can be applied for designing novel iridium complexes with various colors.
  • 加载中
    1. [1]

      [1] Lamansky S, Djurovich P, Murphy D, et al. J. Am. Chem. Soc., 2001, 123:4304-4312

    2. [2]

      [2] Sato S, Morikawa T, Kajino T, et al. Angew. Chem. Int. Ed., 2013, 52:988-992

    3. [3]

      [3] Huang J, Yu J S, Guan Z Q, et al. Appl. Phys. Lett., 2010, 97:143301

    4. [4]

      [4] Tang Y, Yang H R, Sun H B, et al. Chem. Eur. J., 2013, 19: 311-1319

    5. [5]

      [5] Baldo M A, O'Brien D F, You Y, et al. Nature, 1998, 395: 151-154

    6. [6]

      [6] Holder E, Langeveld B M W, Schubert U S. Adv. Mater., 2005, 17:1109-1121

    7. [7]

      [7] Gather M C, Kohnen A, Meerholz K. Adv. Mater., 2011, 23: 233-248

    8. [8]

      [8] Kessler F, Watanabe Y, Sasabe H, et al. J. Mater. Chem. C, 2013, 1:1070-1075

    9. [9]

      [12] Tamayo A B, Alleyne B D, Djurovich P I, et al. J. Am. Chem. Soc., 2003, 125:7377-7387

    10. [10]

      [13] Tsuzuki T, Shirasawa N, Suzuki T, et al. Adv. Mater., 2003, 15:1455-1458

    11. [11]

      [14] Wong W Y, Ho C L, Gao Z Q, et al. Angew. Chem. Int. Ed., 2006, 45:7800-7803

    12. [12]

      [16] Tao Y T, Wang Q A, Yang C L, et al. Adv. Funct. Mater., 2010, 20:2923-2929

    13. [13]

      [17] Zhu Y C, Zhou L, Li H Y, et al. Adv. Mater., 2011, 23:4041-4046

    14. [14]

      [18] Teng M Y, Zhang S, Jiang S W, et al. Appl. Phys. Lett., 2012, 100:073303-073306

    15. [15]

      [19] Li H Y, Zhou L, Teng M Y, et al. J. Mater. Chem. C, 2013, 1:560-565

    16. [16]

      [20] Xu Q L, Wang C C, Li T Y, et al. Inorg. Chem., 2013, 52: 4916-4925

    17. [17]

      [21] Wang C C, Jing Y M, Li T Y, et al. Eur. J. Inorg. Chem., 2013:5683-5693

    18. [18]

      [22] Adachi C, Baldo M A, Forrest S R, et al. Appl. Phys. Lett., 2001, 78:1622-1624

    19. [19]

      [23] Baldo M A, Adachi C, Forrest S R. Phys. Rev. B, 2000, 62: 10967-10977

    20. [20]

      [24] Bettington S, Tavasli M, Bryce M R, et al. Chem. Eur. J., 2007, 13:1423-1428

    21. [21]

      [25] Nazeeruddin M K, Wegh R T, Zhou Z, et al. Inorg. Chem., 2006, 45:9245-9250

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(353)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return