Citation: WANG Dan-Jun, YUE Lin-Lin, GUO Li, ZHANG Jie, FU Feng, XUE Gang-Lin. Synthesis and Enhanced Photocatalytic Mechanism of Fe3+ Doped Three-Dimensional Bi2WO6 Hierarchical Nanoarchitectures[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 961-968. doi: 10.11862/CJIC.2014.137 shu

Synthesis and Enhanced Photocatalytic Mechanism of Fe3+ Doped Three-Dimensional Bi2WO6 Hierarchical Nanoarchitectures

  • Corresponding author: WANG Dan-Jun, 
  • Received Date: 11 October 2013
    Available Online: 5 December 2013

    Fund Project: 国家自然科学基金(No.20973133,21073106);陕西省科技厅工业攻关项目(No.2013K11-08);陕西省科技厅统筹项目(No.2012KG03-16)陕西省教育厅科研基金(No.13JK0669);陕西省化学反应工程重点实验室专项科研基金(No.12JS117);延安市工业攻关项目(No.2011kg-13);延安大学重点项目(No.YD22013-07)资助。 (No.20973133,21073106);陕西省科技厅工业攻关项目(No.2013K11-08);陕西省科技厅统筹项目(No.2012KG03-16)陕西省教育厅科研基金(No.13JK0669);陕西省化学反应工程重点实验室专项科研基金(No.12JS117);延安市工业攻关项目(No.2011kg-13);延安大学重点项目(No.YD22013-07)

  • Fe3+ doped three-dimensional Bi2WO6 hierarchical nanoarchitectures have been synthesized via a hydr-othermal process. XRD, FE-SEM, HRTEM, EDS and UV-Vis-DRS techniques were employed to characterize the phase composition, morphology and spectrum properties of the as-synthesized samples. Rhodamine Bwas selected as a model pollutant to investigate the photocatalytic activity of the as-synthesized sample under visible-light. The results indicate that Fe3+ doped Bi2WO6 exhibits a novel hierarchical nanoarchitectures, and Fe3+ doping can enhance the photocatalytic activity of Bi2WO6 photocatalyst, the amount of Fe3+ doping has a serious effect on the photocatalytic activity of Bi2WO6 photocatalyst. The results also reveal that Fe3+ doped Bi2WO6 nanoarchitecture with high stability is easy to be recycled. Furthermore, the mechanism for the enhancement of the photocatalytic activity was also investigated. The doped electron deficient Fe3+ ions could act as electron traps and facilitate the separation of photogenerated electron-hole pairs, thus improve the photocatalytic efficiency.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972, 238(5358):37-38

    2. [2]

      [2] Kudo A, Hijii S. Chem. Lett., 1999, 28(10):1103-1104

    3. [3]

      [3] Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109(47):22432-22439

    4. [4]

      [4] Zhu S B, Xu T G, Fu H B, et al. Environ. Sci. Technol., 2007, 41(17):6234-6239

    5. [5]

      [5] Li J P, Zhang X, Ai Z H, et al. J. Phys. Chem. C, 2007, 111 (18):6832-6836

    6. [6]

      [6] Zhang L S, Wang W Z, Chen Z Q, et al. J. Mater. Chem., 2007, 17(24):2526-2532

    7. [7]

      [7] Li Y Y, Liu J P, Huang X T, et al. Cryst. Growth Des., 2007, 7(7):1350-1355

    8. [8]

      [8] Liu S W, Yu J G. J. Solid State Chem., 2008, 181(5):1048-1055

    9. [9]

      [9] Duan F, Zheng Y, Chen M. Appl. Surf. Sci., 2011, 257:1972-1978

    10. [10]

      [10] Xu J, Wang W, Gao E, et al. Catal. Commun., 2011, 12(9): 834-838

    11. [11]

      [11] Shang M, Wang W Z, Zhang L, et al. Mater. Chem. Phys., 2010, 120(1):155-159

    12. [12]

      [12] Shi R, Huang G L, Lin J, et al. J. Phys. Chem. C, 2009, 113 (45):19633-19638

    13. [13]

      [13] Fu Y, Chang C, Cheng P, et al. J. Hazard. Mater., 2013, 254-255:185-192

    14. [14]

      [14] Wang D J, Zhen Y Z, Xue G L, et al. J. Mater. Chem. C, 2013, 1(26):4153-4162

    15. [15]

      [15] Wang D J, Xue G L, Zhen Y Z, et al. J. Mater. Chem., 2012, 22(11):4751-4758

    16. [16]

      [16] Guo S, Li X, Wang H, et al. J. Colloid Interface Sci., 2012, 369(1):373-380

    17. [17]

      [17] Li D F, Guo Y H, Hu C W, et al. J. Mol. Catal. A: Chem., 2004, 207(2):183-193

    18. [18]

      [18] Sahel K, Perol N, Chermette H, et al. Appl. Catal. B: Enriron., 2007, 77(1-2):100-109

    19. [19]

      [19] Yu T, Tan X, Zhao L, et al. Chem. Eng. J., 2010, 157(1):86-92

    20. [20]

      [20] Fu H, Pan C, Yao W, et al. J. Phys. Chem. B, 2005, 109(49): 22432-22439

    21. [21]

      [21] Cui Y, Huang J, Fu X, et al. Catal. Sci. Technol., 2012, 2(7): 1396-140

  • 加载中
    1. [1]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(0)
  • Abstract views(235)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return