Citation: ZHANG Jun-Jun, ZHONG Ya, SHEN Xiao-Dong, CUI Sheng, KONG Yong, JI Li-Li, LI Bo-Ya. Properties and Characterization of SiO2 Monolithic Aerogels Doped with Yttrium[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 793-799. doi: 10.11862/CJIC.2014.136 shu

Properties and Characterization of SiO2 Monolithic Aerogels Doped with Yttrium

  • Corresponding author: SHEN Xiao-Dong, 
  • Received Date: 1 August 2013
    Available Online: 28 October 2013

    Fund Project: 教育部“长江学者和创新团队发展计划”(No.IRT1146);江苏省高校优势学科建设工程项目(PAPD)资助项目;江苏省博士后科研资助(No.1302053B)。 (No.IRT1146);江苏省高校优势学科建设工程项目(PAPD)资助项目;江苏省博士后科研资助(No.1302053B)

  • Yttrium doped SiO2 monolithic aerogels were prepared with YCl3·6H2O, TEOS as raw material by sol-gel method and CO2 supercritical drying technique, and the doping concentrations are in the range of 5wt%~30wt% Y2O3. The structures and properties of samples were analyzed by means of SEM (Scanning electron microscope), TEM (Transmission electron microscope), XRD (X-ray diffraction), BET (Brunauer-Emmett-Teller) and XRF (X-ray fluorescence). The results showed that Y2O3-SiO2 aerogels maintained the original space network structures of SiO2 aerogels. Improvements in thermal stability were obtained by incorporation of yttrium species during the aerogels preparation. When treated by the thermal treatment with 900 ℃ for 2 h, the 10wt% (0.447 g of YCl3·6H2O)Y2O3-SiO2 aerogels still showed an amorphous state and gave a larger surface area of 643.79 m2·g-1,and the average pore diameter was about 21.3 nm.
  • 加载中
    1. [1]

      [1] LENG Xiao-Wei(冷小威), LIU Jing-Xiao(刘敬肖), SHI Fei (史非), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(10):1791-1796

    2. [2]

      [2] GAO Qing-Fu(高庆福), ZHANG Chang-Rui(张长瑞), FENG Jian(冯坚), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(10):1758-1763

    3. [3]

      [4] Chen K, Bao Z H, Du A, et al. Micropor. Mesopor. Mater., 2012, 149:16-24

    4. [4]

      [5] Lee J K, Gould G L. J. Sol-Gel Technol., 2007, 44:29-40

    5. [5]

      [6] Leventis N, Mulik S, Wang X, et al. J. Non-Cryst. Solids, 2008, 354:632-644

    6. [6]

      [7] Cui S, Cheng W W, Shen X D, et al. Energy Environ. Sci., 2011, 4(6):2070-2074

    7. [7]

      [8] Lamb R N, Ngamsom B, Trimm D L, et al. Appl. Catal., 2004, 268:43-50

    8. [8]

      [9] Okorn M, Nitikon W, Joongjai P, et al. Mater. Chem. Phys., 2008, 111:431-437

    9. [9]

      [10] Meador M A B, Weber A S, Hindi A, et al. ACS Appl. Mater., 2009, 1:894-906

    10. [10]

      [11] Kistler S S. Nature, 1931, 127:741-742

    11. [11]

      [12] Tatsuro H, Toshihiko O, Toyohiko S, et al. J. Non-Cryst. Solids, 2001, 291:187-198

    12. [12]

      [13] Stengl V, Bakardjieva S, Subrt J, et al. Micropor. Mesopor. Mater., 2006, 91(1-3):1-6

    13. [13]

      [14] Mejri I, Younes M K, Ghorbel A, et al. J Porous Mater., 2010, 17:545-551

    14. [14]

      [15] Hernandez C, Pierre A C. J. Sol-Gel Sci. Technol., 2001, 20: 227-243

    15. [15]

      [16] Yao N, Cao S L, Yeung K L. Micropor. Mesopor. Mater., 2009, 117:570-579

    16. [16]

      [17] Lee S L, Nur H, Hamdan H. Catal. Lett., 2009, 132:28-33

    17. [17]

      [18] Deng Z, Wang J, Zhang Y, et al. Nanostruct. Mater., 2000, 11(8):1313-1318

    18. [18]

      [19] Li C W, Guo S C. Carbon, 2000, 38:1499-1524

    19. [19]

      [20] Li C W, Reichenauer G, Fricke J. Carbon, 2002, 40:2955-2959

    20. [20]

      [21] Zhong Y, Kong Y, Shen X D, et al. Micropor. Mesopor. Mater., 2013, 172:182-189

    21. [21]

      [22] ZHAO Nan(赵南), FENG Jian(冯坚), JIANG Yong-Gang(姜 勇刚), et al. Aerosp. Mater. Technol.(宇航材料工艺), 2010, 5:10-14

    22. [22]

      [23] Toshihiko O, Kiho N, Koji W, et al. J. Non-Cryst. Solids, 2007, 353:2436-2442

    23. [23]

      [24] LIU Guang-Wu(刘光武), ZHOU Bin(周斌), NI Xing-Yuan (倪星元), et al. J. Tongji Univ.(同济大学学报), 2013, 41(7): 1078-1083

    24. [24]

      [25] GAN Li-Hua(甘礼华), LI Guang-Ming(李光明), YUE Tian-Yi(岳天仪), et al. Acta Phys.-Chim. Sin.(物理化学学报), 1999, 15(7):588-592

    25. [25]

      [26] KONG Yong(孔勇), ZHONG Ya(仲亚), SHEN Xiao-Dong(沈 晓冬), et al. J. Nanjing Univ. Tech.(南京工业大学学报), 2012, 34(4):6-10

    26. [26]

      [27] Aravind P R, Mukundan P, Pillai P K, et al. Micropor. Mesopor. Mater., 2006, 96:14-20

    27. [27]

      [28] FENG Jian(冯坚), GAO Qing-Fu(高庆福), FENG Jun-Zong (冯军宗), et al. J. Nat. Univ. Def. Tech.(国防科技大学学 报), 2010, 32(1):40-44

    28. [28]

      [29] Kim S M, Lee Y J, Jun K W, et al. Mater. Chem. Phys., 2007, 104:56-61

    29. [29]

      [30] ZHOU Jie-Jie(周洁洁), CHEN Xiao-Hong(陈晓红), SONG Huai-He(宋怀河), et al. Bull. Chin. Ceram. Soc.(硅酸盐导 报), 2010, 29(5):1002-1006

    30. [30]

      [31] Shewale P M, Rao A V, Rao AP, et al. J. Sol-Gel Sci. Technol., 2009, 49:285-292

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    3. [3]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    4. [4]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    5. [5]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    6. [6]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    9. [9]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    19. [19]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    20. [20]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

Metrics
  • PDF Downloads(0)
  • Abstract views(347)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return