Citation: HUANG Zi-Dong, ZHANG Hai-Yan, CHEN Yi-Ming, WANG Wen-Guang, HONG Tian-Xing, YE Yi-Peng, LEI Xing-Ling. Microwave-Assisted Synthesis and Characterization of Graphene/NiO Composites Material[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 609-614. doi: 10.11862/CJIC.2014.114 shu

Microwave-Assisted Synthesis and Characterization of Graphene/NiO Composites Material

  • Received Date: 14 August 2013
    Available Online: 5 December 2013

    Fund Project: 国家自然科学基金(No.51276044) (No.51276044)“十二五”国家科技支撑计划项目(No.2012BAK26B04) (No.2012BAK26B04)广东省科技计划项目(No.2011B050300017, No.2012B070800015) (No.2011B050300017, No.2012B070800015)广东省高等学校科技创新重点项目(粤财教(2011)473号) (粤财教(2011)473号)广东省自然科学基金(No.S2012040006551)资助项目。 (No.S2012040006551)

  • Graphene/nickel oxide composites (RG/NiO) were prepared by microwave-assisted in-situ synthesis of nano-particles NiO on the defects of thermal expansion graphene (RG). The structure, morphology and the NiO content of the composites were characterized by X-ray diffraction (XRD), Raman spectra (Raman), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry-differential thermal analysis (TGA-DSC). The results show that the number of high-defects graphene layers is about 7~8 and the interlay spacing is around 0.35 nm. After hydrothermal reaction and microwave irradiation, the oxidation resistance of graphene became poor obviously. The nanoparticles NiO with an average diameter of 25 nm evenly and densely coated on the graphene sheet. Simultaneously the weight percentage of NiO in the RG/NiO composites is estimated to be 19.8wt%.
  • 加载中
    1. [1]

      [1] Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696):666-669

    2. [2]

      [2] Castro Neto A H, Guinea F, Peres N M R, et al. Rev. Mod. Phys, 2009,81(1):109-162

    3. [3]

      [3] Blake P, Brimicombe P D, Nair R R, et al. Nano Lett., 2008,8 (6):1704-1708

    4. [4]

      [4] Prasher R. Science, 2010,328(5975):185-186

    5. [5]

      [5] Virendra S, Daeha J, Lei Z, et al. Prog. Mater Sci., 2011,56 (8):1178-1271

    6. [6]

      [6] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669

    7. [7]

      [7] Dikin D A, Stankovich S, Zimney E J, et al. Nature, 2007, 448:457-460

    8. [8]

      [8] Geim A K, Novoselov K S. Nat. Mater., 2007,6:183-191

    9. [9]

      [9] Wu Z S, Wang D W, Ren W, et al. Adv. Funct. Mater, 2010,20(20):3595-3602

    10. [10]

      [10] Zhang L S, Jiang L Y, Yan H J, et al. J. Mater. Chem., 2010,20(26):5462-5467

    11. [11]

      [11] Wu Z S, Ren W C, Wen L, et al. ACS Nano, 2010,4(6): 3187-3194

    12. [12]

      [12] Wang D H, Choi D W, Li J, et al. ACS Nano, 2009,3(4): 907-914

    13. [13]

      [13] Wu Z S, Ren W C, Wang D W, et al. ACS Nano, 2010,4 (10):5835-5842

    14. [14]

      [14] Zhao B, Song J S, Liu P, et al. Mater. Chem., 2011,21:18792-1878

    15. [15]

      [15] Yang Y Y, Hu Z A, Zhang Z Y, et al. Mater. Chem. Phys., 2012,133:363-368

    16. [16]

      [16] Ge C Y, Hou Z H, He B H, et al. J. Sol-Gel Sci. Technol, 2012,63(1):146-152

    17. [17]

      [17] Zhan Y Q, Meng F B, Lei Y J, et al. Mater. Lett., 2011,65 (11):1737-1740

    18. [18]

      [18] Ye J, Zhang H Y, Chen Y M, et al. J. Power Sources, 2012, 212:105-110

    19. [19]

      [19] Wu Z S, Ren W C, Gao L B, et al. ACS Nano, 2009,3(2): 411-417

    20. [20]

      [20] Kottegoda I R M, Idris N H, Lu L, et al. Electrochim. Acta, 2011,56(16):5815-5822

    21. [21]

      [21] Tuinsta F, Koenig J L. J. Chem. Phys., 1970,53(3):1126-1130

    22. [22]

      [22] Ferrari A C, Meyer J C, Scardaci V, et al. Phys. Rev. Lett., 2006,97(18):187401

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(358)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return