Citation:
SONG Jian-Jun, SHAO Guang-Jie, ZHAO Jian-Wei, MA Zhi-Peng, SONG Wei, LIU Shuang, WANG Cai-Xia. First-Principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(3): 615-620.
doi:
10.11862/CJIC.2014.104
-
The electronic structure and diffusion barriers of lithium ions in pure LiFePO4 and doped LiFe1-xMoxPO4(x=0.005, 0.01, 0.015, 0.02, and 0.025) have been calculated based on the first-principle density functional theory (DFT). The calculated results show that the LiFe0.99Mo0.01PO4 has the largest interplanar distance of (101) crystal plane, suggesting the widest Li ion diffusion pathway in [010] direction. Pure LiFePO4 has diffusion energy barrier of 4.289 eV for lithium ions, while the LiFe0.99Mo0.01PO4 has lower diffusion energy barrier of 4.274 eV. The calculated diffusion coefficient of LiFe0.99Mo0.01PO4 is 1.79 times as large as that of pure LiFePO4, indicating that Mo doping is beneficial to lithium ion diffusivity of LiFePO4. The intensity of the partial density of states (PDOS) near the bottom of conduction bands (CBs) becomes stronger after doping with Mo. According to the analysis above, Mo doping is beneficial to improve the electronic conductivity and lithium ion diffusivity of LiFePO4. Lithium ion diffusivity plays more important roles than electronic conductivity on improving the electrochemical performance of LiFePO4 by doping with Mo.
-
-
-
[1]
[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194
-
[2]
[2] Wang J, Sun X. Energy & Environ. Sci., 2012,5(1):5163-5185
-
[3]
[3] Nishimura S, Kobayashi G, Ohoyama K, et al. Nature Mater.,2008,7(9):707-711
-
[4]
[4] Yuan L X, Wang Z H, Zhang W X, et al. Energy & Environ. Sci., 2011,4(2):269-284
-
[5]
[5] Sides C R, Croce F, Young V Y, et al. Electrochem. Solid-State Lett., 2005,8(9):A484-A487
-
[6]
[6] Hu Y S, Guo Y G, Dominko R, et al. Adv. Mater., 2007,19 (15):1963-1966
-
[7]
[7] Mi C H, Cao Y X, Zhang X G, et al. Powder Technol., 2008,181(3):301-306
-
[8]
[8] Park K S, Son J T, Chung H T, et al. Solid State Commun., 2004,129(5):311-314
-
[9]
[9] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069
-
[10]
[10] Delacourt C, Poizot P, LeVasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355
-
[11]
[11] Herle P S, Ellis B, Coombs N, et al. Nature Mater., 2004,3 (3):147-152
-
[12]
[12] Yin X, Huang K, Liu S, et al. J. Power Sources, 2010,195 (13):4308-4312
-
[13]
[13] Wang G, Cheng Y, Yan M, et al. J. Solid State Electrochem., 2006,11(4):457-462
-
[14]
[14] Yao J, Konstantinov K, Wang G X, et al. J. Solid State Electrochem., 2005,11(2):177-185
-
[15]
[15] Wang D, Li H, Shi S, et al. Electrochim. Acta, 2005,50 (14):2955-2958
-
[16]
[16] Hsu K F, Tsay S Y, Hwang, B J. J. Power Sources, 2005, 146(1/2):529-533
-
[17]
[17] Wang G X, Bewlay S L, Konstantinov K, et al. Electrochim. Acta, 2004,50(2/3):443-447
-
[18]
[18] Zhuang D, Zhao X, Xie J, et al. Acta Physico-Chim. Sinica, 2006,22(7):840-844
-
[19]
[19] Ceder G, Chiang Y M, Sadoway D R, et al. Nature, 1998, 392(6677):694-696
-
[20]
[20] Wolverton C, Zunger A. Phys. Rev. Lett., 1998,81(3):606-609
-
[21]
[21] Hou X, Hu S, Li W, et al. Chin. Sci. Bull., 2008,53(11): 1763-1767
-
[22]
[22] Xu F W, Xue W D, Wang M X, et al. J. At. Mol. Phys., 2007:128-132
-
[23]
[23] Ma Z, Shao G, Wang G, et al. Ionics, 2013,19(3):437-443
-
[24]
[24] Perdew J P, Jackson K A, Pederson M R, et al. Phys. Rev. B, 1992,46(11):6671-6687
-
[25]
[25] Shi S, Ouyang C, Xiong Z, et al. Phys. Rev. B, 2005,71 (14):DOI:10.1103/PhysRevB.71.144409
-
[26]
[26] Vanderbilt D. Phys. Rev. B, 1990,41(11):7892-7895
-
[27]
[27] Brutti S, Hassoun J, Scrosati B, et al. J. Power Sources, 2012,217:72-76
-
[28]
[28] Streltsov V A, Belokoneva E L, Tsirelson V G, et al. Acta Crys. B: Struct. Sci., 1993,B49:147-153
-
[29]
[29] Ouyang C, Shi S, Wang Z X, et al. Phys. Rev. B, 2004,69 (10): DOI:10.1103/PhysRevB.104303
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
-
[3]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[4]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[5]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[6]
Qilin YU , Yifei XU , Pengjun ZHANG , Shuwei HAO , Chongqiang ZHU , Chunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418
-
[7]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[8]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[9]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[10]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[11]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[12]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[13]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[14]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[15]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[16]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[17]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[18]
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
-
[19]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[20]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(450)
- HTML views(51)