Citation: SONG Jian-Jun, SHAO Guang-Jie, ZHAO Jian-Wei, MA Zhi-Peng, SONG Wei, LIU Shuang, WANG Cai-Xia. First-Principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 615-620. doi: 10.11862/CJIC.2014.104 shu

First-Principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries

  • Received Date: 3 May 2013
    Available Online: 8 November 2013

    Fund Project: 河北省大学自然科学关键研究项目基金(No.ZH2011228)/河北省自然科学基金[No.B201220369]资助项目。 (No.ZH2011228)

  • The electronic structure and diffusion barriers of lithium ions in pure LiFePO4 and doped LiFe1-xMoxPO4(x=0.005, 0.01, 0.015, 0.02, and 0.025) have been calculated based on the first-principle density functional theory (DFT). The calculated results show that the LiFe0.99Mo0.01PO4 has the largest interplanar distance of (101) crystal plane, suggesting the widest Li ion diffusion pathway in [010] direction. Pure LiFePO4 has diffusion energy barrier of 4.289 eV for lithium ions, while the LiFe0.99Mo0.01PO4 has lower diffusion energy barrier of 4.274 eV. The calculated diffusion coefficient of LiFe0.99Mo0.01PO4 is 1.79 times as large as that of pure LiFePO4, indicating that Mo doping is beneficial to lithium ion diffusivity of LiFePO4. The intensity of the partial density of states (PDOS) near the bottom of conduction bands (CBs) becomes stronger after doping with Mo. According to the analysis above, Mo doping is beneficial to improve the electronic conductivity and lithium ion diffusivity of LiFePO4. Lithium ion diffusivity plays more important roles than electronic conductivity on improving the electrochemical performance of LiFePO4 by doping with Mo.
  • 加载中
    1. [1]

      [1] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194

    2. [2]

      [2] Wang J, Sun X. Energy & Environ. Sci., 2012,5(1):5163-5185

    3. [3]

      [3] Nishimura S, Kobayashi G, Ohoyama K, et al. Nature Mater.,2008,7(9):707-711

    4. [4]

      [4] Yuan L X, Wang Z H, Zhang W X, et al. Energy & Environ. Sci., 2011,4(2):269-284

    5. [5]

      [5] Sides C R, Croce F, Young V Y, et al. Electrochem. Solid-State Lett., 2005,8(9):A484-A487

    6. [6]

      [6] Hu Y S, Guo Y G, Dominko R, et al. Adv. Mater., 2007,19 (15):1963-1966

    7. [7]

      [7] Mi C H, Cao Y X, Zhang X G, et al. Powder Technol., 2008,181(3):301-306

    8. [8]

      [8] Park K S, Son J T, Chung H T, et al. Solid State Commun., 2004,129(5):311-314

    9. [9]

      [9] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069

    10. [10]

      [10] Delacourt C, Poizot P, LeVasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355

    11. [11]

      [11] Herle P S, Ellis B, Coombs N, et al. Nature Mater., 2004,3 (3):147-152

    12. [12]

      [12] Yin X, Huang K, Liu S, et al. J. Power Sources, 2010,195 (13):4308-4312

    13. [13]

      [13] Wang G, Cheng Y, Yan M, et al. J. Solid State Electrochem., 2006,11(4):457-462

    14. [14]

      [14] Yao J, Konstantinov K, Wang G X, et al. J. Solid State Electrochem., 2005,11(2):177-185

    15. [15]

      [15] Wang D, Li H, Shi S, et al. Electrochim. Acta, 2005,50 (14):2955-2958

    16. [16]

      [16] Hsu K F, Tsay S Y, Hwang, B J. J. Power Sources, 2005, 146(1/2):529-533

    17. [17]

      [17] Wang G X, Bewlay S L, Konstantinov K, et al. Electrochim. Acta, 2004,50(2/3):443-447

    18. [18]

      [18] Zhuang D, Zhao X, Xie J, et al. Acta Physico-Chim. Sinica, 2006,22(7):840-844

    19. [19]

      [19] Ceder G, Chiang Y M, Sadoway D R, et al. Nature, 1998, 392(6677):694-696

    20. [20]

      [20] Wolverton C, Zunger A. Phys. Rev. Lett., 1998,81(3):606-609

    21. [21]

      [21] Hou X, Hu S, Li W, et al. Chin. Sci. Bull., 2008,53(11): 1763-1767

    22. [22]

      [22] Xu F W, Xue W D, Wang M X, et al. J. At. Mol. Phys., 2007:128-132

    23. [23]

      [23] Ma Z, Shao G, Wang G, et al. Ionics, 2013,19(3):437-443

    24. [24]

      [24] Perdew J P, Jackson K A, Pederson M R, et al. Phys. Rev. B, 1992,46(11):6671-6687

    25. [25]

      [25] Shi S, Ouyang C, Xiong Z, et al. Phys. Rev. B, 2005,71 (14):DOI:10.1103/PhysRevB.71.144409

    26. [26]

      [26] Vanderbilt D. Phys. Rev. B, 1990,41(11):7892-7895

    27. [27]

      [27] Brutti S, Hassoun J, Scrosati B, et al. J. Power Sources, 2012,217:72-76

    28. [28]

      [28] Streltsov V A, Belokoneva E L, Tsirelson V G, et al. Acta Crys. B: Struct. Sci., 1993,B49:147-153

    29. [29]

      [29] Ouyang C, Shi S, Wang Z X, et al. Phys. Rev. B, 2004,69 (10): DOI:10.1103/PhysRevB.104303

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(0)
  • Abstract views(319)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return