Citation: YI Xi-Bin, WANG Xiu-Chun, ZHANG Jing, MA Jie, LIU Shuo, SHEN Xiao-Dong, CUI Sheng. Synthesis and Characterization of SiO2 Composite Aerogels Enhanced by the Self Growing Nano-Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 603-608. doi: 10.11862/CJIC.2014.103 shu

Synthesis and Characterization of SiO2 Composite Aerogels Enhanced by the Self Growing Nano-Fibers

  • Received Date: 11 September 2013
    Available Online: 30 October 2013

    Fund Project: 国家安全重大基础研究(No.613120020020202) (No.613120020020202)山东省优秀中青年科学家科研奖励基金计划(No.BS2013CL038) (No.BS2013CL038)山东省自然科学基金 (No.ZR2011BL021) (No.ZR2011BL021)材料化学工程国家重点实验室开放课题基金(No.KL12-07) (No.KL12-07)山东省科技发展计划(NO.2013YD02046) (NO.2013YD02046)山东省科学院 青年基金项目(NO.2013QN019)资助项目。 (NO.2013QN019)

  • The SiO2 composite aerogels enhanced by the self growing nano-fibers were prepared using sol-gel techniques and supercritical fluid drying, and converted to the high-strength composite aerogels after 1 200 ℃ high temperature heat treatment process. The structures and properties of composite aerogels were analyzed by means of SEM, TEM, XRD, TG, BET, and the compressive strengths and the true density were also measured. The experimental results showed that the as-synthesized ZrOX/SiO2 composite aerogels exhibited well-proportioned multihole network structure, and the Zirconium oxide nano-fibers alternated in the composite aerogels by the chemical bond. The mechanical strength and the insulation properties were improved evidently. The specific surface area, the compressive strengths and the true density of the ZrOX/SiO2 composite aerogels after 1 200 ℃ high temperature heat treatment process were 827.22 m2·g-1, 9.68 MPa, 0.23 g·cm-3, respectively.
  • 加载中
    1. [1]

      [1] Pérez-Caballero F, Peikolainen A L, Uibu M, et al. Micropor.Mesopor. Mater., 2008,108(1):230-236

    2. [2]

      [2] LIU Ning(刘宁). Chinese J. Inorg. Chem. (无机化学学报),2013,29(3):551-556

    3. [3]

      [3] Gorle B S K, Smirnova I, Dragan M, et al. J. Supercrit. Fluids, 2008,44:78-84

    4. [4]

      [4] GAO Qing-Fu(高庆福), ZHANG Chang-Rui(张长瑞), FENG Jian(冯坚), et al. Chinese J. Inorg. Chem. (无机化学学报), 2008,24(9):1456-1460

    5. [5]

      [5] Cui S, Cheng W W, Shen X D, et al. Energy Environ. Sci., 2011,4(6):2070-2074

    6. [6]

      [6] FENG Jian(冯坚), FENG Jun-Zong(冯军宗), JIANG Yong-Gang(姜勇刚). Aerosp. Mater. Technol. (宇航材料工艺),2012,42(2):42-46

    7. [7]

      [7] Zhong Y, Kong Y, Shen X, et al. Micropor. Mesopor. Mater.,2013,172:182-189

    8. [8]

      [8] ZHONG Ya(仲亚), KONG Yong(孔勇), SHEN Xiao-Dong(沈晓冬), et al. J. Nanjing Univ. Tech.(南京工业大学学报),2012,34(5):26-29

    9. [9]

      [9] WU Li-Na(吴丽娜), HUANG Yu-Dong(黄玉东), WANG Zhi-Jiang(王志江), et al. Acta Phys.-Chim. Sin. (物理化学学报), 2010,26(6):1717-1721

    10. [10]

      [10] YANG Jie(杨杰), LI Shu-Kui(李树奎), WANG Fu-Chi (王富耻), et al. J. Beijing Inst. Tech.(北京工业大学学报), 2010,30(6):746-756

    11. [11]

      [11] ZHAO Nan(赵南), FENG Jian(冯坚), JIANG Yong-Gang (姜勇刚), et al. J. Chin. Ceram. Soc.(硅酸盐学报), 2012,40 (10):1473-1477

    12. [12]

      [12] FENG Jian(冯坚), GAO Qing-Fu(高庆福), FENG Jun-Zong (冯军宗), et al. J. National Univ. Defense Tech.(国防科技 大学学报), 2010,32(1):40-44

    13. [13]

      [13] WU Hui-Jun(吴会军), PENG Cheng(彭程), DING Yun-Fei(丁云飞), et al. J. Guangzhou Univ.(广州大学学报), 2012,6:32-37

    14. [14]

      [14] ZHANG He-Xin(张贺新), HE Xiao-Dong(赫晓东), LI Yao (李垚). Rare Met. Mater. Eng.(稀有金属材料工程), 2007,36 (1):567-569

    15. [15]

      [15] Skaltsas T, Avgouropoulos G, Tasis D. Micropor. Mesopor. Mater., 2011,143(2):451-457

    16. [16]

      [16] ZHONG Ya(仲亚), ZHANG Jun-Jun(张君君), SHEN Xiao-Dong(沈晓冬), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2013,29(2):319-325

    17. [17]

      [17] Kong Y, Zhong Y, Shen X D, et al. Non-Cryst. Solids, 2012, 358(23):3150-3155

    18. [18]

      [18] KONG Yong(孔勇), SHEN Xiao-Dong(沈晓冬), CUI Sheng (崔升), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(10):2071-2076

    19. [19]

      [19] Kim G S, Hyun S H. J. Mater. Sci., 2003,38(9):1961-1966

    20. [20]

      [20] WANG Dong-Dong(王冬冬), WANG Gang(王刚), SUN Xiao-Fei(孙小飞), et al. Chinese J. Inorg. Chem. (无机化学 学报), 2012,28(3):491-494

    21. [21]

      [21] FENG Jian(冯坚), GAO Qing-Fu(高庆福), WU Wei(武纬), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009,25 (10):1758-1763

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(0)
  • Abstract views(309)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return