Citation: ZHANG Fen, CHAI Bo, LIAO Xiang, REN Mei-Xia, LIU Bing-Ren. Preparation and Visible Light Photocatalytic Properties of RGO/C3N4 Composites[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 821-827. doi: 10.11862/CJIC.2014.094 shu

Preparation and Visible Light Photocatalytic Properties of RGO/C3N4 Composites

  • Corresponding author: CHAI Bo, 
  • Received Date: 3 June 2013
    Available Online: 1 November 2013

    Fund Project: 武汉轻工大学引进(培养)人才科研启动项目(2012RZ12) (培养)人才科研启动项目(2012RZ12)武汉轻工大学大学生创新创业训练计划资助项目(No.CXXL2013009)。 (No.CXXL2013009)

  • The graphitic-like carbon nitride (C3N4) and graphene oxide (GO) were respectively prepared by one step semi-enclosed pyrolysis and improved Hummers method. Following the reduced graphene oxide/C3N4 (RGO/C3N4) composites were fabricated via a photo-reduction route. The as-prepared samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance absorption spectroscopy (DRS), Photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity of samples was evaluated under visible light irradiation using Rhodamine B(RhB) as probe molecule. The experimental results show that the introduction of RGO could considerably enhance photocatalytic activity, and the 6.0% RGO/C3N4 composite exhibits the best photocatalytic performance. The significantly enhanced photocatalytic activity for the present composite originates from the electron-accepting and electron-transportation property of RGO, which inhibits the recombination rate of photogenerated electron-hole pairs.
  • 加载中
    1. [1]

      [1] Hu X L, Li G S, Yu J C. Langmuir, 2010, 26:3031-3039

    2. [2]

      [2] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39: 4206-4219

    3. [3]

      [3] Chen X B, Shen S H, Guo L J, et al. Chem. Rev., 2010, 110: 6503-6570

    4. [4]

      [4] Lu S Y, Wu D, Wang Q L, et al. Chemosphere, 2011, 82: 1215-1224

    5. [5]

      [5] Chen X B, Mao S S. Chem. Rev., 2007, 107:2891-2959

    6. [6]

      [6] Wang H, Gao J, Guo T Q, et al. Chem. Commun., 2012, 48: 275-277

    7. [7]

      [7] Bi Y P, Ouyan S X, Umezawa N, et al. J. Am. Chem. Soc., 2011, 133:6490-6492

    8. [8]

      [8] Shang M, Wang W Z, Zhang L. J. Hazard. Mater., 2009, 167: 803-809

    9. [9]

      [9] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25:10397-10401

    10. [10]

      [10] Liu J H, Zhang T K, Wang Z C, et al. J. Mater. Chem., 2011, 21:14398-14401

    11. [11]

      [11] Cui Y J, Zhang J S, Zhang G G, et al. J. Mater. Chem., 2011, 21:13032-13039

    12. [12]

      [12] Ge L, Han C C, Liu J. Appl. Catal. B: Environ., 2011, 108 (109):100-107

    13. [13]

      [13] Sun J X, Yuan Y P, Qiu L G, et al. Dalton Trans., 2012, 41: 6756-6763

    14. [14]

      [14] Cao S W, Yuan Y P, Fang J, et al. Int. J. Hydrogen Energy, 2013, 38:1258-1266

    15. [15]

      [15] Chai B, Peng T Y, Mao J, et al. Phys. Chem. Chem. Phys., 2012, 14:16745-16752

    16. [16]

      [16] Dreyer D R, Park S, Bielawski C W, et al. Chem. Soc. Rev., 2010, 39:228-240

    17. [17]

      [17] GENG Jing-Yi(耿静漪), ZHU Xin-Sheng(朱新生), DU Yu-Kou(杜玉扣). Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(2):357-361

    18. [18]

      [18] ZHOU Tian(周田), CHEN Bing-Di(陈炳地), YAO Ai-Hua (姚爱华), et al. Chinese. J. Inorg. Chem. (无机化学学报), 2013, 29(2):231-236

    19. [19]

      [19] YING Hong(应红), WANG Zhi-Yong(王志永), GUO Zheng-Duo(郭政铎), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011, 27(6):1482-1486

    20. [20]

      [20] Xu T G, Zhang L W Cheng H Y, et al. Appl. Catal. B: Environ., 2011, 101:382-387

    21. [21]

      [21] Xiang Q J, Yu J G, Jaroniec M. J. Phys. Chem. C, 2011, 115:7355-7363

    22. [22]

      [22] Liao G Z, Chen S, Quan X, et al. J. Mater. Chem., 2012, 22: 2721-2726

    23. [23]

      [23] Zhang H, Fan X F, Quan X, et al. Environ. Sci. Technol., 2011, 45:5731-5736

    24. [24]

      [24] CHAI Bo(柴波), SONG Fa-Kun(宋发坤), ZHOU Huan (周欢), et al. J. Chinese. Ceram. Soc.(硅酸盐学报), 2013, 41 (4):560-566

    25. [25]

      [25] Shen J F, Yan B, Shi M, et al. J. Mater. Chem., 2011, 21: 3415-3421

    26. [26]

      [26] Cao J, Xu B Y, Lin H L, et al. Dalton Trans., 2012, 41: 11482-11490

    27. [27]

      [27] Cheng H F, Huang B B, Dai Y, et al. Langmuir, 2010, 26: 6618-6624

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    10. [10]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    18. [18]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return