Citation: FAN Ying-Hua, LUO Qin, LIU Gui-Xia, WANG Jin-Xian, DONG Xiang-Ting, YU Wen-Sheng, SUN De. Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 627-632. doi: 10.11862/CJIC.2014.093 shu

Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials

  • Received Date: 26 August 2013
    Available Online: 28 November 2013

    Fund Project: 国家自然科学基金(NO.51072026) (NO.51072026)吉林省科技发展计划项目(NO.20130206002GX)资助项目。 (NO.20130206002GX)

  • SnS2 nanomaterials with different morphologies were synthesized by hydrothermal method using different surfactants and different sulfur sources. The influence of reaction condition on morphology and property was discussed. The structure and composition of the as-prepared SnS2 nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic performance of the as-synthesized SnS2 was evaluated by catalytic degradation of Rhodamine B (RhB). The results show that the surfactant and sulfur source play an important role in the structure and morphology of SnS2. When the molar ratio of Sn4+ to Surfactant is 1:1, the samples are all pure hexagonal phase SnS2. The obtained SnS2 nanoplates employing sodium citrate as surfactant and thiourea as sulfur source show the best photocatalytic performance and the larger BET surface area.
  • 加载中
    1. [1]

      [1] Tsuji I, Kato H, Kudo A. Chem. Mater., 2006,18(7):1969-1975

    2. [2]

      [2] Du W M, Deng D H, Han Z T, et al. CrystEngComm., 2011, 13:2071-2076

    3. [3]

      [3] Kale B B, Baeg J O, Lee S M, et a1. Adv. Funct. Mater., 2006,16(10):1349-1354

    4. [4]

      [4] Zhang Y C, Du Z N, Li K W, et al. Sep. Purif. Technol., 2011, 81:101-107

    5. [5]

      [5] Liu H, Su Y, Chen P, et al. J. Mol. Catal. A: Chem., 2013, 378:285-292

    6. [6]

      [6] Zhang Y C, Du Z N, Li S Y, et al. Appl. Catal. B: Environ., 2010,95:153-159

    7. [7]

      [7] Zhang Y C, Li J, Zhang M, et al. Environ. Sci. Technol., 2011,45(21):9324-9331

    8. [8]

      [8] Lei Y Q, Song S Y, Fan W Q, et al. J. Phys. Chem., 2009, 113(4):1280-1285

    9. [9]

      [9] Hupka J, Zaleska A, Janczarek M, et al. Soil and Water Pollution Monitoring, Protection and Remediation NATO Science Series, 2006,69:351-367

    10. [10]

      [10] Arora S K, Patel D H, Agarwal M K. J. Mater. Sci., 1994,29 (15):3979-3983

    11. [11]

      [11] Jiang T, Lough A, Ozin G A, et al. J. Mater. Chem., 1998,8: 721-732

    12. [12]

      [12] Lucena R, Fresno F, Conesa J C. Appl. Catal. A: Gen., 2012,415-416:111-117

    13. [13]

      [13] Li X, Zhu J, Li H X. Appl. Catal. B: Environ., 2012,123-124:174-181

    14. [14]

      [14] Liu X H, Bai H X. Powder Technol., 2013,237:610-615

    15. [15]

      [15] Cai P, Ma D K, Liu Q C, et al. J. Mater. Chem. A, 2013,1: 5217-5223

    16. [16]

      [16] Zhou X L, Zhou T F, Hu J C, et al. CrystEngCommun., 2012,14:5627-5633

    17. [17]

      [17] Luo B, Fang Y, Wang B, et al. Energy Environ., 2012,5: 5226-5230

    18. [18]

      [18] Du Y P, Yin Z Y, Rui X H, et al. Nanoscale, 2013,5:1456-1459

    19. [19]

      [19] Mukaibo H, Yoshizawa A, Momma T, et al. J. Power Sources, 2003,119-121:60-63

    20. [20]

      [20] Deshpande N G, Sagade A A, Gudage Y G, et al. J. Alloys Compd., 2007,436(1-2):421-426

    21. [21]

      [21] Reiss P, Couderc E, Girolamo J D, et al. Nanoscale, 2011,3: 446-489

    22. [22]

      [22] Chao J F, Xu X, Huang H T, et al. CrystEngCommun., 2012,14:6654-6658

    23. [23]

      [23] Panda S K, Antonakos A, Liarokapis E, et al. Mater. Res. Bull., 2007,42(3):576-583

    24. [24]

      [24] Lin Y T, Shi J B, Chen Y C, et al. Nanoscale Res. Lett., 2009,4(7):694-698

    25. [25]

      [25] Zhu Y Q, Chen Y Q, Liu L Z. J. Cryst. Growth, 2011,328 (1):70-73

    26. [26]

      [26] Shi W D, Huo L H, Wang H S, et al. Nanotechnology, 2006,17:2918-2924

    27. [27]

      [27] He M, Yuan L X, Huang Y H. RSC Adv., 2013,3:3374-3383

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(285)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return