Citation: XIANG Jun, ZHANG Xiong-Hui, YE Qin, LI Jia-Le, HUANG Tao, SHEN Xiang-Qian. Structural Design and Absorption Properties of Double-Layer Microwave Absorbers Based on Li0.35Zn0.3Fe2.35O4 and Carbon Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 845-852. doi: 10.11862/CJIC.2014.090 shu

Structural Design and Absorption Properties of Double-Layer Microwave Absorbers Based on Li0.35Zn0.3Fe2.35O4 and Carbon Nanofibers

  • Corresponding author: XIANG Jun, 
  • Received Date: 17 September 2013
    Available Online: 8 November 2013

    Fund Project: 中国博士后科学基金(No.2013M540418);江苏省高校自然科学基金(No.11KJB430006);江苏省博士后科研资助计划(No.1301055B);江苏省“青蓝工程”资助项目。 (No.2013M540418);江苏省高校自然科学基金(No.11KJB430006);江苏省博士后科研资助计划(No.1301055B)

  • Li0.35Zn0.3Fe2.35O4 and carbon nanofibers with average diameters of 160 and 360 nm, respectively, were fabricated by electrospinning technique combined with subsequent heat treatment. By dispersing the nanofibers homogeneously into a silicone rubber matrix, the relative complex permittivity and permeability of the composites containing either 60wt% Li0.35Zn0.3Fe2.35O4 nanofibers or 5wt% carbon nanofibers as fillers were measured in the frequency range of 2~18 GHz. Electromagnetic wave absorbing performance of both single-layer and double-layer microwave absorbers was evaluated according to transmission line theory. It is found that the double-layer absorbers have much better microwave absorption properties than the single-layer absorbers with the same thickness due to the proper combination of the electromagnetic characteristics resulting from the magnetic Li0.35Zn0.3Fe2.35O4 nanofibers and dielectric carbon nanofibers. When the absorbing layer is the Li0.35Zn0.3Fe2.35O4 nanofibers/silicone rubber composite with a thickness of 1.8 mm and the matching layer is the carbon nanofibers/silicone rubber composite with a thickness of 0.2 mm, the refection loss (RL) of the double-layer absorber reaches a minimum value of -47.8 dBat around 13.9 GHz and the absorption bandwidth with the RLvalue below -10 dBis about 8.8 GHz ranging from 9.2~18 GHz. Meanwhile, the RLvalue exceeding -20 dBis obtained over the range of 11.5~18 GHz, which covers the whole Ku-band. The results indicate that the optimal double-layer microwave absorbers can be a promising candidate for lightweight and highly effective microwave absorption materials in Ku-band.
  • 加载中
    1. [1]

      [1] Guan P F, Zhang X F, Guo J J. Appl. Phys. Lett., 2012, 101: 153108

    2. [2]

      [2] Zhu W M, Wang L, Zhao R, et al. Nanoscale, 2011, 3:2862-2864

    3. [3]

      [3] YU Mei(于美), LIU Peng-Rui(刘鹏瑞), LIU Jian-Hua(刘建 华), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27 (9):1743-1747

    4. [4]

      [4] Wen F S, Zhang F, Liu Z Y. J. Phys. Chem. C, 2011, 115: 14025-14030

    5. [5]

      [5] Liu Y, Zhang Z Q, Xiao S T, et al. Appl. Surf. Sci., 2011, 257:7678-7683

    6. [6]

      [6] Park K Y, Han J H, Lee S B, et al. Compos. Sci. Technol., 2009, 69:1271-1278

    7. [7]

      [7] CHEN Xue-Gang(陈雪刚), YE Ying(叶瑛), CHENG Ji-Peng (程继鹏). J. Inorg. Mater.(无机材料学报), 2011, 26(5):449-457

    8. [8]

      [8] Wei C Y, Shen X Q, Song F Z, et al. Mater. Des., 2012, 35: 363-368

    9. [9]

      [9] Shen G Z, Xu M, Xu Z. Mater. Chem. Phys., 2007, 105:268-272

    10. [10]

      [10] Guo S L, Wang L D, Wang Y M, et al. Chin. Phys. B, 2013, 22:044101

    11. [11]

      [11] Wang M, Duan Y P, Liu S H, et al. J. Magn. Magn. Mater., 2009, 321:3442-3446

    12. [12]

      [12] Duan Y B, Wang L, Liu Z, et al. Plast. Rubber Compos., 2013, 42:82-87

    13. [13]

      [13] Wang T, Qiao L, Han R, et al. J. Magn. Magn. Mater., 2012, 324:3209-3212

    14. [14]

      [14] Wu H J, Wang L D, Guo S L, et al. Appl. Phys. A, 2012, 108:439-446

    15. [15]

      [15] Liu J R, Itoh M, Machida K I. Appl. Phys. Lett., 2006, 88: 062503

    16. [16]

      [16] JIANG Hong(江红), GUO Jia(郭佳), ZHAO Lu(赵璐), et al. J. Inorg. Mater.(无机材料学报), 2010, 25(1):73-76

    17. [17]

      [17] Zhen L, Gong X Y, Jiang J T, et al. J. Appl. Phys., 2009, 104:034312

    18. [18]

      [18] XIANG Jun(向军), CHU Yan-Qiu(褚艳秋), ZHOU Guang-Zhen(周广振), et al. Acta Chim. Sinica(化学学报), 2011, 69 (20):2457-2464

    19. [19]

      [19] Zhao D L, Lü Q, Shen Z M. J. Alloys Compd., 2009, 480: 634-638

    20. [20]

      [20] ZHANG Cai-Hong(张彩红), SHENG Yi(盛毅), TIAN Hong (田红), et al. Acta Phys. Sinica(物理学报), 2011, 60(3): 036101

    21. [21]

      [21] SHEN Guo-Zhu(沈国柱), XU Zheng(徐政), ZHANG Xian-Ru(张先如). J. Tongji Univ.: Nat. Sci.(同济大学学报:自然 科学版), 2008, 36(3):379-382

    22. [22]

      [22] Lu B, Huang H, Dong X L, et al. J. Appl. Phys., 2008, 104: 114313

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(0)
  • Abstract views(449)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return