Citation: WANG Hui, CHAI Zhi-Fang, WANG Dong-Qi*. Interactions between Humic Acids and Actinides:Recent Advances[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 37-52. doi: 10.11862/CJIC.2014.084 shu

Interactions between Humic Acids and Actinides:Recent Advances

  • Received Date: 9 October 2013
    Available Online: 28 October 2013

    Fund Project:

  • Recent advances on the experimental and computational studies of interactions between humic acids (HAs) and actinides are briefly reviewed. It appears that HAs are able to form coordination complexes with actinide cations (Ann+) mainly via their carboxylate groups, and as a consequence, influence the migration of Ann+. In geomedia, many factors may affect the interactions between HA and Ann+, including pH, ionic strength, mineral surfaces, among which the effect of pH is the most significant. In general, at low pH, HA may enhance the adsorption of Ann+ on the surface of minerals, while when pH is around or larger than7, HA plays an opposite role. In addition, HAs may reduce high valent oxidative actinide cations, and the reductivity originates from their quinoid and phenol groups. In those HAs with high presence of reduced sulfur, HAs may become more redox sensitive due to the participation of Sin the redox reactions. The paper is concluded with an outlook.
  • 加载中
    1. [1]

      [1] LIU Yuan-Fang (刘元方). J. Nucl. Radiochem.(核化学与放 射化学), 1990, 12(1):1-8

    2. [2]

      [2] LI Bing(李兵), ZHU Hai-Jun(朱海军), LIAO Jia-Li(廖家莉), et al. Chem. Res. Appl.(化学研究与应用), 2007, 19(12):1289-1295

    3. [3]

      [3] TAO Zu-Yi(陶祖贻), LU Chang-Qing(陆长青). J. Nucl. Rad-iochem(核化学与放射化学), 1992, 14(2):120-125

    4. [4]

      [4] GUO Liang-Tian(郭亮天), SHI Ying-Xia(史英霞). Radiat. Prot. Bull.(辐射防护通讯), 2003, 23(4):16-23

    5. [5]

      [5] LIU Qi-Feng(刘期凤), LIU Ning(刘宁), LIAO Jia-Li(廖家莉), et al. Chem. Res. Appl.(化学研究与应用), 2006, 18(5):465-471

    6. [6]

      [6] Sachs S, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 290 (1):17-29

    7. [7]

      [7] Stevenson F J. Humus Chemistry, Genesis, Composition, Reactions, 2nd edn.. New York: Wiley, 1994.

    8. [8]

      [8] Xia K, Weesner F, Bleam W F, et al. Soil Sci. Soc. Am. J., 1998, 62:1240-1246

    9. [9]

      [9] Diallo M S, Simpson A, Gassman P, et al. Environ. Sci. Technol., 2003, 37(9):1783-1793

    10. [10]

      [10] Carhart R E, Smith D H, Brown H, et al. J. Am. Chem. Soc., 1975, 97(20):5755-5762

    11. [11]

      [11] Smith D H, Gray N A B, Nourse J G, et al. Anal. Chim. Acta, 1981, 133(4):471-197

    12. [12]

      [12] Abe H, Okuyama T, Fujiwara F, et al. J. Chem. Inf. Comput. Sci., 1984, 24(4):220-229

    13. [13]

      [13] Kudo Y, Sasaki S. J. Chem. Inf. Comput. Sci., 1985, 25(3): 252-257

    14. [14]

      [14] Funatsu K, Miyabaski N, Sasaki S. J. Chem. Inf. Comput. Sci., 1988, 28(1):9-18

    15. [15]

      [15] Oshima T, Ishida Y, Sato K, et al. Anal. Chim. Acta, 1980, 122(2):95-102

    16. [16]

      [16] Bangov I P. J. Chem. Inf. Comput. Sci., 1994, 34(2):277-286

    17. [17]

      [17] Contreras M L, Rozas R, Valdivias R. J. Chem. Inf. Comput. Sci., 1994, 34(3):610-616

    18. [18]

      [18] Faulon J L, Vandenbroucke M, Drappier J M, et al. Adv. Org. Geochem., 1981, 16:981-993

    19. [19]

      [19] Faulon J L. J. Chem. Inf. Comput. Sci., 1994, 34(1):197-206

    20. [20]

      [20] Schluten H R, Schnitzer M. Naturwissenschaften, 1993, 80 (1):29-30

    21. [21]

      [21] Steelink, C. Humic Substances in Soil, Sediment, and Water, Aiken G R, McKnight D M, Wershaw R L, et al. Eds., New York: John Wiley, 1985:457-476

    22. [22]

      [22] Engebretson R R, von Wandruszka, R. Environ. Sci. Technol., 1994, 28(11):1934-1941

    23. [23]

      [23] Jansen S, Malaty S, Nwabara M, et al. Mater. Sci. Eng., 1996, C4(3):175-179

    24. [24]

      [24] Sein L T, Varnum J M, Jansen S A. Environ. Sci. Technol., 1999, 33(4):546-552

    25. [25]

      [25] Chiou C T, Porter P E, Schmedding D. Environ. Sci. Technol., 1983, 17(4):227-231

    26. [26]

      [26] Orlov D S. Humic Substances of Soils and General Theory of Humification; Russian Translation Series 111, A. A. Balkema: Brookfield, VT, 1995.

    27. [27]

      [27] Brown P A, Leenheer J A. Humic Substances in The Suwa-nnee River Georgia: Interactions, Properties, and Proposed Structures, USGS, Open-File Report 87-557; 311, 1989.

    28. [28]

      [28] Poerschman J, Kopinke F D. Environ. Sci. Technol., 2000, 35(6):1142-1148

    29. [29]

      [29] Diallo M S, Faulon J L, Goddard W A Ⅲ, et al. Humic Substances: Structures, Models and Functions; Davies. G, Ghabbour, E A, Eds., Cambridge: Royal Society of Chemistry, 2001:221

    30. [30]

      [30] Minofar B, Jungwirth P, R. Das M, et al. J. Phys. Chem. C, 2007, 111(23):8242-8247

    31. [31]

      [31] Benedetti M F, Milne C J, Kinniburgh D G, et al. Environ. Sei. Technol., 1995, 29(2):446-457

    32. [32]

      [32] ZENG Lei(曾蕾), YI Cheng(易诚), ZHOU Chong-Wen(周崇 文), et al. Res. Survey Environ.(资源调查与环境), 2010, 31 (2):136-143

    33. [33]

      [33] Schnitzer M. 12th International Congress of Soil Sci. India: New Delhi, 1982, 5:67-78

    34. [34]

      [34] Gamble D S, Marinsky J A, Langford C H. Ion Exchange and Sovent Extraction. Marinsky J A, Marcus Y, Ed., New York, 1985, 9:373

    35. [35]

      [35] Manning G S. Biophys. Chem., 1977, 7(2):95-102

    36. [36]

      [36] Lecomte M, Lacquement J. Clefs CEA, 2002, 46:13-17

    37. [37]

      [37] Artinger R, Marquardt C M, Kim J I, et al. Radiochim Acta, 2000, 88:609-612

    38. [38]

      [38] Artinger R, Rabung T, Kim J I, et al. J. Contam. Hydrol., 2002, 58:1-12

    39. [39]

      [39] Choppin G R. Radiochim. Acta, 1992, 58/59:113-120

    40. [40]

      [40] Kim J I. Handbook on the Physics and Chemistry of the Actinides. Freeman A J, Keller C, Eds., New York: Elsevier, 1986. Chap. 8

    41. [41]

      [41] Silva R J, Nitsche H. Radiochim. Acta, 1995, 70/71:377-396

    42. [42]

      [42] Schmeide K, Sachs S, Bernhard G. Sci. Total Environ., 2012, 419:116-123

    43. [43]

      [43] Sakuragi T, Sato S, Kozaki T, et al. Radiochim. Acta, 2004, 92:697-702

    44. [44]

      [44] Samadfam M, Jintoku T, Sato S, et al. Radiochim. Acta, 2000, 88:717-721

    45. [45]

      [45] Benes P, Stamberg K, Siroky L, et al. Radioanal. Nucl. Chem., 2002, 254(2):231-239

    46. [46]

      [46] Bruggeman C, Liu D J, Maes N. Radiochim. Acta, 2010, 98 (9-11):597-605

    47. [47]

      [47] Buda R A, Banik N L, Kratz J V. et al. Radiochim. Acta, 2008, 96:657-665

    48. [48]

      [48] Rabung T, Geckeis H, Kim J I, et al. Radiochim. Acta, 1998, 82:243-248

    49. [49]

      [49] Montavon G, Rabung T, Geckeis H, et al. Environ. Sci. Technol., 2004, 38(16):4312-4318

    50. [50]

      [50] Tao Z Y, Li W J, Zhang F M, et al. J. Colloid Interf. Sci., 2003, 265:221-226

    51. [51]

      [51] Liao J L, Liu N, Zhang D, et al. Nucl. Sci. & Technol., 2007, 18(5):287-293

    52. [52]

      [52] Geckeis H, Lutzenkirchen J, Polly R, et al. Chem. Rev., 2013, 113:1016-1062

    53. [53]

      [53] Tan X L, Chang P P, Fan Q H, et al. Colloid. Surf. A, 2008, 328:8-14

    54. [54]

      [54] Tan X L, Fan Q H, Wang X K, et al. Environ. Sci. Technol, 2009, 43(9):3115-3121

    55. [55]

      [55] Fan Q H, Shao D D, Lu Y, et al. Chem. Eng. J., 2009, 150: 188-195

    56. [56]

      [56] Ren X, Wang S, Yang S, et al. J. Radioanal. Nucl. Chem., 2010, 283:253-259

    57. [57]

      [57] XU Jun-Zheng(许君政), FAN Qiao-Hui(范桥辉), BAI Hong-Bin(白洪彬), et al. J. Nucl. Radiochem(核化学与放 射化学), 2009, 31(3):179-185

    58. [58]

      [58] Ghosh M, Schnitzer M. Soil Sci., 1980, 129:266-276

    59. [59]

      [59] Iskrenova-Tchoukova E, Kalinichev A G, Kirkpatrick R J. Langmuir, 2010, 26(20):15909-15919

    60. [60]

      [60] Sposito G. Surface Chemistry of Soils. New York: Oxford Unioersity Press, 1984.

    61. [61]

      [61] Gu B, Schmitt J, Chen Z, et al. Environ. Sci. Technol., 1994, 28(1):38-46

    62. [62]

      [62] DONG Wen-Ming(董文明), DU Jin-Zhou(杜金州), TAO Zu-Yi(陶祖贻). At. Energ. Sci. Technol.(原子能科学技术), 2000, 34(1):92-96

    63. [63]

      [63] SHI Ying-Xia(史英霞), GUO Liang-Tian(郭亮天). J. Nucl. Radiochem.(核化学与放射化学), 2003, 25(1):22-25

    64. [64]

      [64] Steudtner R, Sachs S, Schmeide K, et al. Radiochim. Acta, 2011, 99:687-692

    65. [65]

      [65] Plaschke M, Rothe J, Denecke M A, et al. AIP Conf. Proc., 2010, 1221:144-149

    66. [66]

      [66] Ivanov P, Griffiths T, Bryan N D, et al. J. Environ. Monit., 2012, 14:2968-2975

    67. [67]

      [67] Murphy R J, Lenhart J J, Honeyman B D. Colloids Surf. A, 1999, 157:47-62

    68. [68]

      [68] Lenhart J J, Honeyman B D. Geochim. Cosmochim. Acta, 1999, 63(19/20):2891-2901

    69. [69]

      [69] Payne T E, Davis J A, Waite T D. Radiochim. Acta, 1996, 74:239-243

    70. [70]

      [70] Moll W F Jr. Clays Clay Miner., 2001, 49(5):374-380

    71. [71]

      [71] Mermut A R, Cano A F. Clays Clay Miner., 2001, 49(5):381-386

    72. [72]

      [72] Chipera S J, Bish D L. Clays Clay Miner., 2001, 49(5):398-409

    73. [73]

      [73] Wu W. Clays Clay Miner., 2001, 49(5):446-452

    74. [74]

      [74] Madejová J, Komadel P. Clays Clay Miner., 2001, 49(5):410-432

    75. [75]

      [75] Kogel J E, Lewis S A. Clays Clay Miner., 2001, 49(5):387-392

    76. [76]

      [76] Borden D, Giese R F. Clays Clay Miner., 2001, 49(5):444-445

    77. [77]

      [77] Křepelová A, Reich T, Sachs S, et al. J. Colloid Interface Sci., 2008, 319(1):40-47

    78. [78]

      [78] Křepelová A, Sachs S, Bernhard G. Radiochim. Acta, 2006, 94(12):825-833

    79. [79]

      [79] Sachs S, Brendler V, Geipel G. Radiochim. Acta, 2007, 95 (2):103-110

    80. [80]

      [80] K?epelová A, Brendler V, Sachs S. et al. Environ. Sci. Technol., 2007, 41(17):6142-6147

    81. [81]

      [81] Reich T, Reich T Ye. Amayri S, et al. AIP Conf. Proc., 2007, 882:179-183

    82. [82]

      [82] Thompson H A, Parks G A. Brown G E, Adsorption of Metals by Geomedia, Jenne Jr. E. A. Ed., San Diego: Academic Press, 1998:349

    83. [83]

      [83] Reich T, Moll H, Arnold T, et al. J. Electron Spectrosc. Relat. Phenom., 1998, 96:237-243

    84. [84]

      [84] Sylwester E R, Hudson E A, Allen P G. Geochim. Cosmochim. Acta, 2000, 64:2431-2438

    85. [85]

      [85] Hennig C, Reich T, Dáhn R, et al. Radiochim. Acta, 2000, 90(9-11):653-657

    86. [86]

      [86] Arnold T, Scheinost A C, Baumann N, Annual report 2006, Report FZD-459, Forschungszentrum Dresden-Rossendorf, 2007:53

    87. [87]

      [87] Sherman D M, Peacock C L, Hubbard C G. Geochim. Cosmochim. Acta, 2008, 72(2):298-310

    88. [88]

      [88] Schmeide K, Sachs S, Bubner M, et al. Inorg. Chim. Acta, 2003, 351:133-140

    89. [89]

      [89] Denecke M A, Pompe S, Reich T, et al. Radiochim. Acta, 1997, 79:151-157

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(492)
  • Abstract views(660)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return