Citation: YIN Ping, JIANG Xiao-Hong*, ZOU Min, LU Lu-De, WANG Xin. Catalytic Effect of SiO2/Co3O4 Core-Shell Catalyst on Thermal Decomposition of AP[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 185-191. doi: 10.11862/CJIC.2014.076 shu

Catalytic Effect of SiO2/Co3O4 Core-Shell Catalyst on Thermal Decomposition of AP

  • Received Date: 11 November 2013
    Available Online: 9 December 2013

    Fund Project:

  • Highly dispersed SiO2 microspheres with mean diameter of 200 nm were prepared by modified Stöber method. Then the prepared SiO2 nanoparticles were coated with Co3O4 via liquid precipitation method and urea homogeneous precipitation method respectively, thus a new type SiO2/Co3O4 core-shell catalysts with different coating forms were obtained. X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared (IR) spectra, Raman Microscopy and BET specific surface area measurement were used to characterize the SiO2/Co3O4 composite nanoparticles. The catalytic activities of SiO2/Co3O4 composites for thermal decomposition of ammonium perchlorate (AP) were studied by differential scanning calorimetry (DSC). Furthermore, we espescially investigated the influence of different coating forms on its catalytic effect. The results indicate that SiO2/Co3O4 nanocomposites synthesised by different methods possess obvious core-shell structure are with high specific surface area,which are layer-coated and particle-coated respectively. And the catalytic activity of particle-coated SiO2/Co3O4 nanocomposites is best, which reduce the high decomposition temperature of AP by 110 ℃, and increase heat quantity by 662 J·g-1.
  • 加载中
    1. [1]

      [1] CHEN Qing-Ling(陈庆龄). Modern Chem. Ind.(现代化学), 2004, 24(7):20-25

    2. [2]

      [2] FANG Li(范立), DUAN Tao(段涛). Guangzhou Chem. Ind. (广州化工), 2010, 38(12):25-26

    3. [3]

      [3] YAN Zi-Feng(阎子峰). Nanomet. Catal. Technol.(纳米催化 技术). Beijing:Chemical Industry Process, 2003.

    4. [4]

      [4] Aleksandr V D. Propellants, Explos., Pyrotech., 2005, 30:244-249

    5. [5]

      [5] LI Feng-Sheng(李凤生), YANG Yi(杨毅), MA Zhen-Ye (马振叶), et al. Nanomet. Funct. Composit. Mater. Appl. (纳米功能复合材料), Beijing:National Defence Industry Press, 2003.

    6. [6]

      [6] LIU Jian-Xun(刘建勋), LI Feng-Sheng(李凤生), JIANG Wei (姜炜), et al. J. Solid Roket Technol.(固体火箭技术), 2007, 30(3):243-247

    7. [7]

      [7] SHI Li-Hong(石利红), LI Xiao-Feng(李晓峰), LI De-Bao (李德宝), et al. Chin. J. Catal. (催化学报), 2010, 31(12): 1483-1488

    8. [8]

      [8] Stöber W, Fink A. J. Colloid Interf. Sci., 1968, 26:62-69

    9. [9]

      [9] Yang J H, Sasaki T. Cryst. Growth Des., 2010, 10(3):1233-1236

    10. [10]

      [10] Farhadi S, Safabakhsh J, Zaringhadam P. J. Nanostruct. Chem., 2013, 3:69-77

    11. [11]

      [11] Meng Y D, Chen D, Jiao X L. J. Phys. Chem. B, 2006, 110: 15212-15217

    12. [12]

      [12] Chakkalakal G L, Alexandre M, Abetz C, et al. Macromol. Chem. Phys., 2012, 213:513528.

    13. [13]

      [13] MENG Yong-De(孟永德). Thesis for the Doctorate of Shandong University(山东大学博士论文). 2007

    14. [14]

      [14] Farhadi S, Pourzare K, Sadeghinejad S. J. Nanostruct. Chem., 2013, 3:16-22

    15. [15]

      [15] Tripathy S K, Christy M. Mater. Lett., 2008, 62:1006-1009

    16. [16]

      [16] LU Lu-De(陆路德). Quantum Chemistry (量子化学). Beijing: Science Press, 1980

    17. [17]

      [17] Boldyrev V V. Thermochim. Acta, 2006, 443:1-36

    18. [18]

      [18] YE Jian(叶剑), ZHANG Rui-Feng(张瑞丰), HOU Lin-Xi (侯琳熙). Chin. J. Environ.Eng.(环境工程学报), 2011, 5(7): 1598-1600

    19. [19]

      [19] Keenan A G, Siegmund R F. Quart. Rev. Chem. Soc., 1969, 23(3):435-452

    20. [20]

      [20] Rosso L, Tuckerman M E. Solid State Ion, 2003, 161:219-229

    21. [21]

      [21] Chaturvedi S, Pragnesh N D. J. Saudi Chem. Soc., 2013, 17 (2):135-149

    22. [22]

      [22] ZHANG Bo-Sheng(张柏生). Introd. Powder Burning(火药燃 料导论). Nanjing:East China Insttute of Technology, 1988.

    23. [23]

      [23] LIU Jian-Xun(刘建勋), WANG Zuo-Shan(王作山), JIANG Wei(姜炜), et al. Rare Metal Mater. Eng.(稀有金属材料与 工程), 2007, 36(Z3):649-653

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(0)
  • Abstract views(450)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return