Citation: WAN Hong-Xiang, JU Wei-Wei, ZHANG Yu, XU Yan*. Synthesis, Structures and Properties of the 3D Compounds Containing L-Chiral Helical Chains[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 85-92. doi: 10.11862/CJIC.2014.074 shu

Synthesis, Structures and Properties of the 3D Compounds Containing L-Chiral Helical Chains

  • Received Date: 12 July 2013
    Available Online: 4 December 2013

    Fund Project:

  • Two compounds with L-Chiral helical chains have been solvothermal synthesized: Sm(HCO2)(SO4)(H2O) (1) and KSm(H2O)(SO4)2 (2). Complex 1 is synthesized without any chiral auxiliary, while complex 2 is the opposite. However, in 2, chiral auxiliaries do not exsit in the inorganic framework but work as the inducer in the formation of the complex. Single-crystal X-ray diffraction (XRD) demonstrates that complex 1 crystallizes in space group P41 and complex 2 crystallizes in space group P31. Complex 1 is constructed of two types of L-[Sm-O]n chains, every two different kinds of adjacent helical chains are connected by sharing Sm(Ⅲ) ions to form Intertwined left-handed double helices. Compound 2 is constructed of two L-chiral helical chains: [Sm-O-S1-O]n and [Sm-O-S2-O]n, the two adjacent helical chains are connected by sharing Sm(Ⅲ) ions to form double helices chains, every two adjacent double helices chains are connected through K+ linkages to form Intertwined left-handed double helices. The second-harmonic-generation efficiencies and fluorescence of 1 and 2 were studied.
  • 加载中
    1. [1]

      [1] Hagrman P J, Hagrman D, Zubieta J. Angew. Chem. Int. Ed., 1999, 38:2638-2684

    2. [2]

      [2] Judd D A J, Nettles J H, Nevins N, et al. J. Am. Chem. Soc., 2001, 123:886-897

    3. [3]

      [3] Muller A, Peters F, Pope M T, et al. Chem. Rev., 1998, 98: 239-272

    4. [4]

      [4] Fang X K, Anderson T M, Hill C L. Angew. Chem. Int. Ed., 2005, 44:3540-3544

    5. [5]

      [5] Xin F B, Pope M T. J. Am. Chem. Soc., 1996, 118:7731-7736

    6. [6]

      [6] Kumaiga H, Inoue K. Angew. Chem. Int. Ed., 1999, 38:1661-1664

    7. [7]

      [7] Long D L, Burkholder E, Cronin L. Chem. Soc. Rev., 2007, 36: 105-121

    8. [8]

      [8] Minguet M, Luneau D, Lhotel E, et al. Angew. Chem. Int. Ed., 2002, 41:586-589

    9. [9]

      [9] Inoue K, Imai H, Ghalsasi P S, et al. Angew. Chem. Int. Ed., 2001, 40:4242-4245

    10. [10]

      [10] Zelewskv A, von Knof U. Angew. Chem. Int. Ed., 1999, 38: 302-322

    11. [11]

      [11] Long D L, Kogerler P, Farrugia L J, et al. Chem. Asian J., 2006, 1:352-357

    12. [12]

      [12] Kortz U, Savelieff M G, Ghali F Y A, et al. Angew. Chem. Int. Ed., 2002, 41:4070-4073

    13. [13]

      [13] Fang X K, Anderson T M, Hou Y, et al. Chem. Commun., 2005:5044-5046

    14. [14]

      [14] Cheetham A K, Ferey G, Loiseau T. Angew. Chem. Int. Ed., 1999, 38:3268-3292

    15. [15]

      [15] Coronado E, Galan-Mascaros J R, Gomez-García C J, et al. Inorg. Chem., 2001, 40:113-120

    16. [16]

      [16] Han S J, Manson J L, Kim J, et al. Inorg. Chem., 2000, 39: 4182-4185

    17. [17]

      [17] Katsuki I, Motoda Y, Sunatsuki Y, et al. J. Am. Chem. Soc., 2002, 124:629-640

    18. [18]

      [18] Ezuhara T, Endo K, Aoyama Y. J. Am. Chem. Soc., 1999, 121:3279-3282

    19. [19]

      [19] Tabellion F M, Seidel S R, Arif A M, et al. Angew. Chem. Int. Ed., 2001, 40:1529-1532

    20. [20]

      [20] Perez-García L, Amabilino D B. Chem. Soc. Rev., 2002, 31: 342-356

    21. [21]

      [21] Sasa M, Tanaka K, Bu X H, et al. J. Am. Chem. Soc., 2001, 123:10750-10751

    22. [22]

      [22] Gao E Q, Bai S Q, Wang Z M, et al. J. Am. Chem. Soc., 2003, 125:4984-4985

    23. [23]

      [23] Tan H Q, Li Y G, Zhang Z M, et al. J. Am. Chem. Soc., 2007, 129:10066-10067

    24. [24]

      [24] Sporer C, Wurst K, Amabilino D B, et al. Chem. Commun., 2002:2342-2343

    25. [25]

      [25] Cheetham A K, Ferey G, Loiseau T. Angew. Chem. Int. Ed., 1999, 38:3268-3292

    26. [26]

      [26] Soghomonian V, Chen Q, Haushalter R C, et al. Science, 1993, 259:1596-1599

    27. [27]

      [27] Zhang D, Lu Y, Zhu D R, et al. Inorg. Chem., 2013, 52: 3253-3258

    28. [28]

      [28] Doran M, Norquist A J, OHare D. Chem. Commun., 2002: 2946-2947

    29. [29]

      [29] Wickleder M S. Chem. Rev., 2002, 102:2011-2088

    30. [30]

      [30] Wang D, Yu R, Xu Y, et al. Chem. Lett., 2002, 11:1120-1121

    31. [31]

      [31] Xing Y, Zhan S, Li G H, et al. Dalton. Trans., 2003, 5:940-943

    32. [32]

      [32] Dan M, Behera J N, Rao C N R. J. Mater. Chem., 2004, 14: 1257-1265

    33. [33]

      [33] Dolzhenkova E F, Shekhovtsov A N, Tolmachev A V, et al. J. Cryst. Growth, 2001, 233:473-476

    34. [34]

      [34] Xing Y, Liu Y L, Shi Z, et al. Solid State Chem., 2003, 174: 381-385

    35. [35]

      [35] Perles J, Fortes-Revilla C, Gutierrez-Puebla E, et al. Chem. Mater., 2005, 17:2701-2706

    36. [36]

      [36] Xu Y, Ding S H, Zheng X F. J. Solid State Chem., 2007, 180: 2020-2025

    37. [37]

      [37] Ye N, Stone-Sundberg J L, Hruschka M A, et al. Chem. Mater., 2005, 17:2687-2692

    38. [38]

      [38] Ju W W, Zhang D, Zhu D R, et al. Inorg. Chem., 2012, 51: 13373-13379

    39. [39]

      [39] LÜ Yun(吕赟), ZHANG Deng(张登), FAN Xin-Rong (范新蓉), et al. Chinese J. Inorg. Chem. (无机化学学报), 2013, 29:2623-2630

    40. [40]

      [40] Zhou W L, Xu Y, Han L J, et al. Dalton Trans., 2010, 39: 3681-3686

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

Metrics
  • PDF Downloads(454)
  • Abstract views(672)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return