Citation: XIAO Chong, LI Zhou, XIE Yi*. Synergistic Optimization of Electrical and Thermal Transport Properties in Chalcogenides Thermoelectric Materials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 10-19. doi: 10.11862/CJIC.2014.071 shu

Synergistic Optimization of Electrical and Thermal Transport Properties in Chalcogenides Thermoelectric Materials

  • Received Date: 27 September 2013
    Available Online: 6 November 2013

    Fund Project:

  • Over the past few years, thermoelectric materials have redrawn considerable attentions among physics, chemistry, and materials researchers due to their capability of direct conversion between heat and electricity, which is today well recognized as viable renewable-energy sources. However, it is still one of the biggest challenges hitherto to independently optimize these three parameters for obtaining high-performance thermoelectric materials with large ZT value. Chalcogenide semiconductors as the most important class of thermoelectric materials, the synergistic optimization of their electrical-thermal transport properties has attracted widespread attentions. Herein, we reviewed the latest development of the synergistic optimization in Chalcogenide semiconductors. We also analyzed the inherent physical mechanisms within the synergistic optimization. Finally, we summarized the prospects of these new strategies in thermoelectric materials development.
  • 加载中
    1. [1]

      [1] Wise M, Calvin K, Thomson A, et al. Science, 2009, 324 (5931):1183-1186

    2. [2]

      [2] Wood C. Rep. Prog. Phys., 1988, 51(4):459-539

    3. [3]

      [3] Bell L E. Science, 2008, 321(5895):1457-1461

    4. [4]

      [4] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433-448

    5. [5]

      [5] Tritt T M, Subramanian M A. MRS Bull., 2006, 31(3):188-198

    6. [6]

      [6] Snyder G J, Toberer E S. Nat. Mater., 2008, 7(2):105-114

    7. [7]

      [7] Shakouri A. Annu. Rev. Mater. Res., 2011, 41:399-431

    8. [8]

      [8] Mahan G D, Bartkowiak M. Appl. Phys. Lett., 1999, 74(7): 953-954

    9. [9]

      [9] Rao C N R. Acc. Chem. Res., 1984, 17(3):83-89

    10. [10]

      [10] Imada M, Fujimori A, Tokura Y. Rev. Modern. Phys., 1998, 70(4):1039-1263

    11. [11]

      [11] Wu C Z, Feng F, Feng J, et al. J. Am. Chem. Soc., 2011, 133(35):13798-13801

    12. [12]

      [12] Kobayashi M. Solid State Ionics., 1990, 39(3-4):121-149

    13. [13]

      [13] Santhosh K M C, Pradeep B. Semicond. Sci. Technol., 2002, 17(3):261-265

    14. [14]

      [14] Wiegers G A. Am. Mineral., 1971, 56(11-12):1882-1888

    15. [15]

      [15] Billetter H, Ruschewitz U. Z. Anorg. Allg. Chem., 2008, 634 (2):241-246

    16. [16]

      [16] Xiao C, Xu J, Li K, et al. J. Am. Chem. Soc., 2012, 134(9): 4287-4293

    17. [17]

      [17] Xiao C, Qin, X M, Zhang J, et al. J. Am. Chem. Soc., 2012, 134(44):18460-18466

    18. [18]

      [18] Slack G A. CRC Handbook of Thermoelectric. Boca Raton: Chemical Rubber, 1995.

    19. [19]

      [19] Snyder G J, Christensen M, Nishibor E, et al. Nat. Mater., 2004, 3(7):458-463

    20. [20]

      [20] Xiao C, Xu J, Cao B X, et al. J. Am. Chem. Soc., 2012, 134 (18):7971-7977

    21. [21]

      [21] Goto Y, Naito F, Sato R. Inorg. Chem., 2013, 52(17):9861-9866

    22. [22]

      [22] Liu H L, Shi X, Xu F F, et al. Nat. Mater., 2012, 11(5):422-425

    23. [23]

      [23] Larson P, Mahanti S D, Kanatzidis M G. Phys. Rev. B, 2000, 61(12):8162-8171

    24. [24]

      [24] Youn S J, Freeman A J. Phys. Rev. B, 2000, 63(8):085112

    25. [25]

      [25] Sun Y F, Cheng H, Gao S, et al. J. Am. Chem. Soc., 2012, 134(50):20294-20297

    26. [26]

      [26] Hicks L D, Harman T C, Dresselhaus M S. Appl. Phys. Lett., 1993, 63(23):3230-3232

    27. [27]

      [27] Klemens P G. Proc. Phys. Soc. London Sec. A, 1955, 68(12): 1113-1128

    28. [28]

      [28] Carruthers P. Rev. Mod. Phys., 1961, 33(1):92-138

    29. [29]

      [29] Dismukes J P, Ekstrom L, Steigmeier E F, et al. J. Appl. Phys., 1964, 35(10):2899-2907

    30. [30]

      [30] Slack G A, Hussain M A. J. Appl. Phys., 1991, 70(5):2694-2718

    31. [31]

      [31] Cahill D G, Watanabe F, Rockett A, et al. Phys. Rev. B, 2005, 71(23):235202

    32. [32]

      [32] Yu C, Scullin M L, Huijben M, et al. Appl. Phys. Lett., 2008, 92(19):191911

    33. [33]

      [33] Vineis C J, Shakouri A, Majumdar A, et al. Adv. Mater., 2010, 22(36):3970-3980

    34. [34]

      [34] Rowe D M, Shukla V S, Savvides N, Nature, 1981, 290(5809): 765-766

    35. [35]

      [35] Vining C B, Laskow W, Hanson J O, et al. J. Appl. Phys., 1991, 69(8):4333-4340

    36. [36]

      [36] Chen G. Phys. Rev. B, 1998, 57(23):14958-14973

    37. [37]

      [37] Mi J L, Zhu T J, Zhao X B, et al. J. Appl. Phys., 2007, 101 (5):054314

    38. [38]

      [38] Bux S K, Blair R G, Gogna P K, et al. Adv. Funct. Mater., 2009, 19(12):2445-2452

    39. [39]

      [39] Biswas K, He J Q, Blum I D, et al. Nature, 2012, 489(7416): 414-418

    40. [40]

      [40] Disalvo F J. Science, 1999, 285(5428):703-706

    41. [41]

      [41] Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press, 1964.

    42. [42]

      [42] Ravich Y I, Efimova B A, Smirnov I A. Semiconducting Lead Chalcogenides. New York: Plenum Press, 1970.

    43. [43]

      [43] Sitter H, Lischka K, Heinrich H. Phys. Rev. B, 1977, 16(2): 680-687

    44. [44]

      [44] Ravich Y I. In Lead Chalcogenides: Physics and Applica-tions: Ch.1. New York: Taylor & Fransics Group, 2003.

    45. [45]

      [45] Hoang K S, Mahanti D, Kanatzidis M G. Phys. Rev. B, 2010, 81(11):115106

    46. [46]

      [46] Pei Y Z, Shi X, LaLonde A, et al. Nature, 2011, 473(7345): 66-69

    47. [47]

      [47] Rhyee J S, Lee K H, Lee S M, et al. Nature, 2009, 459(7249): 965-968

    48. [48]

      [48] Rhyee J S, Ahn K, Lee K H, et al. Adv. Mater., 2011, 23 (19):2191-2194

    49. [49]

      [49] Zhu G H, Lan Y C, Wang H, et al. Phys. Rev. B, 2011, 83 (11):115201

    50. [50]

      [50] Kim J H, Rhyee J S, Kwon Y S. Phys. Rev. B, 2012, 86(23): 235101

    51. [51]

      [51] Ahn K, Cho E, Rhyee J S, et al. J. Mater. Chem., 2012, 22 (12):5730-5736

    52. [52]

      [52] Alivisatos A P. Science, 1996, 271(5251):933-937

    53. [53]

      [53] Dresselhaus M S, Chen G, Tang M Y, et al. Adv. Mater., 2007, 19(8):1043-1053

    54. [54]

      [54] Brus L E. J. Phys. Chem., 1986, 90(12):2555-2560

    55. [55]

      [55] Henglein A. Top. Curr. Chem., 1988, 143:113-119

    56. [56]

      [56] Steigerwald M L, Brus L E. Annu. Reu. Mater. Sci., 1989, 19:471-495

    57. [57]

      [57] Steigerwald M L, Brus L E. Acc. Chem. Res., 1990, 23(6): 183-188

    58. [58]

      [58] Halperin W P. Rev. Mod. Phys., 1986, 58(3):533-606

    59. [59]

      [59] Ball P, Garwin L. Nature, 1992, 355:761-766

    60. [60]

      [60] Goldstein A N, Echer C M, Alivisatos A P. Science, 1992, 256(5062):1425-1427

    61. [61]

      [61] Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590):2229-2232

    62. [62]

      [62] Ikeda T, Collins L A, Ravi V A, et al. Chem. Mater., 2007, 19(4):763-767

    63. [63]

      [63] Zhao Y, Dyck J S, Hernandez B M, et al. J. Am. Chem. Soc., 2010, 132(14):4982-4983

    64. [64]

      [64] Chen J, Zhang G, Li B W. Nano Lett., 2010, 10(10):3978-3983

    65. [65]

      [65] Scheele M, Oeschler N, Veremchuk I, et al. ACS Nano, 2010, 4(7):4283-4291

    66. [66]

      [66] Poudeu P F P, Güeguen A, Wu C I, et al. Chem. Mater., 2010, 22(3):1046-1053

    67. [67]

      [67] Zhang Y C, Wang H, Kraemer S, et al. ACS Nano, 2011, 5 (4):3158-3165

    68. [68]

      [68] Soni A, Zhao Y Y, Yu L G, et al. Nano Lett., 2012, 12(3): 1203-1209

    69. [69]

      [69] Soni A, Shen Y Q, Yin M, et al. Nano Lett., 2012, 12(8): 4305-4310

    70. [70]

      [70] Mehta R J, Zhang Y L, Karthik C, et al. Nat. Mater., 2012, 11(3):233-240

    71. [71]

      [71] Liu Y, Zhao L D, Liu Y C. J. Am. Chem. Soc., 2011, 133 (50):20112-20115

    72. [72]

      [72] Pei Y L, He J Q, Li J F. NPG Asia Mater., 2013, 5:e47

    73. [73]

      [73] Li F, Li J F, Zhao L D. Energy Environ. Sci., 2012, 5(5): 7188-7195

    74. [74]

      [74] Li J, Sui J H, Pei Y L. Energy Environ. Sci., 2012, 5(9):8543-8547

    75. [75]

      [75] Barreteau C, Berardan D, Amzallag E. Chem. Mater., 2012, 24(16):3168-3178

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(599)
  • Abstract views(918)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return