Citation: ZHANG Jie, TENG Ming-Yu, DAI Guo-Liang, ZHAO Song-Lin, WANG Jia-Li, ZHANG Ping, SONG Tong-Tong. Synthesis, Characterization, Linear and Nonlinear Optical Effects of Nonsymmetrical Bipolar (D-π-A) Pyridyl Metallo Salophen Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 499-505. doi: 10.11862/CJIC.2014.059 shu

Synthesis, Characterization, Linear and Nonlinear Optical Effects of Nonsymmetrical Bipolar (D-π-A) Pyridyl Metallo Salophen Complexes

  • Received Date: 29 July 2013
    Available Online: 26 September 2013

    Fund Project: 浙江省自然科学基金(No.LQ13B010001) (No.LQ13B010001)国家自然科学基金(No.21203135) (No.21203135)浙江省教育厅科研基金(No.Y201016505)资助项目。 (No.Y201016505)

  • The pyridine substituent vanillins (1a and 1b) were synthesized by still coupling reaction. New unsymmetrical metallo Salophen complexes (3a, 3b and 3c) derived from the condensation of monoamine 2 and pyridine substituent salicylaldehyde in the presence of transition metal ions (Zn2+, Ni2+) as template have been synthesized and characterized. The linear and third-order non-linear optical (two photon absorption, TPA) properties of the complexes have been measured. The emission of (3a and 3c) were in the visible range(504~516 nm) with lifetime between 4.51 to 5.18 ns and quantum yields (Φem) between 4.3% to 5.3%. Decay times with nano-second scale indicate the emissions come from the singlet states. Complexes 3a, 3b and 3c are thermally stable with onset decomposition temperatures (Td) within the range of 333 to 374 ℃. 100 fs laser pulses with the open-aperture Z-scan method was used to measure the TPA cross-sections σ(2) of 3a, 3b and 3c at 800 nm. The σ(2) could reach to 1 403 GM, which is among the largest value known for metalloSalophen complexes to date. In general, these Salophen complexes show moderate fluorescence quantum yields, larger σ(2), low cytotoxicity of zinc complexes and thermal stability. Hence, they are potentially good TPA candidates for tissue imaging work and excitation by NIR or longer-wavelength radiation is possible to increase penetration depth and reduce cell damage.
  • 加载中
    1. [1]

      [1] Xing G C, Liao Y L, Wu X Y, et al. Acs Nano, 2012,6(12):10835-10844

    2. [2]

      [2] Dai J, Fu Z C, Lan S, et al. J. Appl. Phys., 2012,112:063102

    3. [3]

      [3] Zhang C, Zou C L, Yan Y L, et al. J. Am. Chem. Soc., 2011, 133(19):7276-7279

    4. [4]

      [4] del Valle E, Zippilli S, Laussy F P, et al. Phys. Rev. B, 2010,81(3):035302

    5. [5]

      [5] Belfield K D, Bondar M V, Yanez C O, et al. J. Mater. Chem., 2009,19(40):7498-7502

    6. [6]

      [6] Lott J, Ryan C, Valle B, et al. Adv. Mater., 2011,23(21): 2425-2429

    7. [7]

      [7] Iliopoulos K, Krupka O, Gindre D, et al. J. Am. Chem. Soc., 2010,132(41):14343-143145

    8. [8]

      [8] Corredor C C, Huang Z L, Belfield K D, et al. Chem. Mater., 2007,19(21):5165-5173

    9. [9]

      [9] Garcia G, Hammerer F, Poyer F, et al. Biorg. Med. Chem., 2013,21(1):153-165

    10. [10]

      [10] Cepraga C, Gallavardin T, Marotte S, et al. Polym. Chem., 2013,4(1):61-67

    11. [11]

      [11] Zhao T T, Shen X Q, Li L, et al. Nanoscale, 2012,4(24): 7712-7719

    12. [12]

      [12] Fowley C, Nomikou N, McHale A P, et al. J. Mater. Chem., 2012,22(13):6456-6462

    13. [13]

      [13] Bergendahl L T, Paterson M J. J. Phys. Chem. B, 2012,116 (39):11818-11828

    14. [14]

      [14] Albota M, Beljonne D, Bredas J L, et al. Science, 1998,281 (5383):1653-1656

    15. [15]

      [15] Odom S A, Webster S, Padilha L A, et al. J. Am. Chem. Soc., 2009,131(22):7510-7511

    16. [16]

      [16] Pawlicki M, Collins H A, Denning R G, et al. Angew. Chem. Int. Edit., 2009,48(18):3244-3266

    17. [17]

      [17] ZHOU Hong-Ping(周虹屏), HAO Fu-Ying(郝扶影), ZHANG Ju-Zhou(张居舟), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2004,20(10):1165-1171

    18. [18]

      [18] WANG Xiao-Mei(王筱梅), ZHOU Yu-Fang(周玉芳), WANG Chun(王春), et al. Sci. China Ser. E(中国科学), 2002,32(1): 20-27

    19. [19]

      [19] Kuimova M K, Collins H A, Balaz M, et al. Org. Biomol. Chem., 2009,7(5):889-896

    20. [20]

      [20] Thorley K J, Hales J M, Anderson H L, et al. Angew. Chem. Int. Edit., 2008,47(37):7095-7098

    21. [21]

      [21] LIANG Ying-Hong(梁英红), ZHONG Zeng-Pei(钟增培), LI Na(李娜). Chinese J. Org. Chem.(有机化学), 2004,24(12): 1577-1582

    22. [22]

      [22] Zhang B G, Li Y J, Liu R, et al. ACS Appl. Mater. Interfaces, 2013,5(3):565-572

    23. [23]

      [23] Zhao Y, Roberts G M, Greenough S E, et al. Angew. Chem. Int. Edit., 2012,51(45):11263-11266

    24. [24]

      [24] Pasatoiu T D, Madalan A M, Zamfirescu M, et al. Phys. Chem. Chem. Phys., 2012,14(32):11448-11456

    25. [25]

      [25] Schwich T, Cifuentes M P, Gugger P A, et al. Adv. Mater., 2011,23(12):1433-1435

    26. [26]

      [26] Liu T L, Yang C, Li J F, et al. J. Lumin., 2013,134:459

    27. [27]

      [27] Imakita K, Ito M, Naruiwa R, et al. Appl. Phys. Lett., 2012, 101(4):041112

    28. [28]

      [28] Wang B, Wang Y C, Hua J L, et al. Chem. Eur. J., 2011,17 (9):2647-2655

    29. [29]

      [29] Huang C, Sartin M M, Siegel N, et al. J. Mater. Chem., 2011,21(40):16119-16128

    30. [30]

      [30] Hai Y, Chen J J, Zhao P, et al. Chem. Commun., 2011,47 (8):2435-2437

    31. [31]

      [31] Ye Z H, De Boni L, Neves U M, et al. Tetrahedron Lett., 2009,50(13):1371-1373

    32. [32]

      [32] Liu C G, Guan X H, Su Z M. J. Phys. Chem. C, 2011,115 (13):6024-6032

    33. [33]

      [33] Trujillo A, Fuentealba M, Carrillo D, et al. Inorg. Chem., 2010,49(6):2750-2764

    34. [34]

      [34] Pietrangelo A, Sih B C, Boden B N, et al. Adv. Mater., 2008,20(12):2280-2284

    35. [35]

      [35] Di Bella S, Fragala I, Ledoux I, et al. Chem. Eur. J., 2001,7 (17):3738-3743

    36. [36]

      [36] DiBella S, Fragala I, Ledoux I, et al. J. Am. Chem. Soc., 1997,119(40):9550-9557

    37. [37]

      [37] Zhang J, Zhong C, Zhu X J, et al. Polyhedron, 2013,49(1): 121-128

    38. [38]

      [38] Tanihara J, Ogawa K, Kobuke Y. J. Photoch. Photobio. A, 2006,178(2-3):140-149

    39. [39]

      [39] Meech S R, Phillips D C. J. Photochem., 1983,23(2):193-217

    40. [40]

      [40] Sheik-Bahae M, Said A A, Wei T H, et al. IEEE J. Quantum Electron., 1990,26(4):760-769

    41. [41]

      [41] Zhao W, Palffy-Muhoray P. Appl. Phys. Lett., 1994,65(6): 673-675

    42. [42]

      [42] MENG Xiang-Ru(孟祥茹), ZHAO Jin-An(赵金安), HOU Hong-Wei(侯红卫), et al. Chinese J. Inorg. Chem.(无机化学学报), 2003,19(1):16-19

    43. [43]

      [43] Kim K S, Lim J M, Osuka A, et al. J. Photochem. Photobiol. C: Photochem. Rev., 2008,9(1):13-28

    44. [44]

      [44] Lo W K, Wong W K, Wong W Y, et al. Inorg. Chem., 2006, 45(23):9315-9325

    45. [45]

      [45] Campbell E J, Nguyen S T. Tetrahedron Lett., 2001,42(7): 1221-1225

    46. [46]

      [46] Xia Q H, Ge H Q, Ye C P, et al. Chem. Rev., 2005,105(5): 1603-1662

    47. [47]

      [47] Lopez J, Mintz E A, Hsu F L, et al. Tetrahedron-Asymmetr, 1998,9(21):3741-3744

    48. [48]

      [48] Holbach M, Zheng X L, Burd C, et al. J. Org. Chem., 2006, 71(7):2903-2906

    49. [49]

      [49] Zhang J, Zhao F C, Zhu X J, et al. J. Mater. Chem., 2012, 22:16448

    50. [50]

      [50] Kleij A W, Tooke D M, Spek A L, et al. Eur. J. Inorg. Chem., 2005(22):4626-4634

    51. [51]

      [51] JI Yan(吉彦), QIAN Ying(钱鹰), ZHOU Zhi-Qiang(周志 强), et al. Acta Chim. Sin.(化学学报), 2011,69(20):2499-2504

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

Metrics
  • PDF Downloads(0)
  • Abstract views(287)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return