Citation: HAN Yu-Xiang, SHAO Yun, WAN Hai-Qin, XU Zhao-Yi, ZHENG Shou-Rong. Catalytic Hydrodechlorination of 1, 2-Dichloroethane over TiO2 Nanotube Supported Pd-Ag Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 481-486. doi: 10.11862/CJIC.2014.053 shu

Catalytic Hydrodechlorination of 1, 2-Dichloroethane over TiO2 Nanotube Supported Pd-Ag Catalysts

  • Received Date: 8 April 2013
    Available Online: 9 October 2013

    Fund Project: 国家自然科学基金(No.21107043和21277066)资助项目。 (No.21107043和21277066)

  • TiO2 nanotube supported Pd-Ag catalysts were prepared by the photodeposition and impregnation methods, and the catalystic hydrodechlorination of 1, 2-dichloroethane was investigated. The characterization results of UV-Vis, XRD and XPS showed that given similar Ag loading amount, much higher Ag enrichment was identified on the catalyst prepared by the photodeposition method than by the impregnation method. Accordingly, the catalyst prepared by the photodeposition method exhibit markedly enhanced ethylene selectivity for the hydrodechlorination of 1, 2-dichloroethane. Additionally, the ethylene selectivity was gradually increased with the Ag loading content.
  • 加载中
    1. [1]

      [1] Vogel M T, Criddle C S, McCarty L P. Environ. Sci. Technol., 1987,21:722-736

    2. [2]

      [2] Goldberg D E. Sci. Total. Environ., 1991,100:17-28

    3. [3]

      [3] Pedro M Z, Casas A J, Comez-Sainero M L, et al. Appl. Catal. B: Environ., 2010,98:79-85

    4. [4]

      [4] Kim I D, Allen T D. Ind. Eng. Chem. Res., 1997,36:3019-3026

    5. [5]

      [5] Han Y X, Zhou J, Wang W J, et al. Appl. Catal. B: Environ., 2012,125:172-179

    6. [6]

      [6] Vadlamannati S L, Kovalchuk I V, d'Itri L J. Catal Let., 1999,58:173-178

    7. [7]

      [7] Lambert S, Ferauche F, Brasseur A, et al. Catal. Today, 2005,100:283-289

    8. [8]

      [8] Heinrichs B, Schoebrechts P J, Pirard P J. J. Catal., 2001, 200:309-320

    9. [9]

      [9] Srebowata A, Lisowski W, Sobczak W J, et al. Catal. Today, 2011,175:576-584

    10. [10]

      [10] Kitano M, Nakajima K, Kondo J N, et al. J. Am. Chem. Soc., 2010,132:6622-6623

    11. [11]

      [11] Liu Z Y, Zhang X T, Nishimoto S S, et al. J. Phys. Chem. C, 2008,112:253-259

    12. [12]

      [12] Chen H, Shao Y, Xu Z Y, et al. Appl. Catal. B: Environ., 2011,105:255-262

    13. [13]

      [13] Ohsaki Y, Masaki N, Kitamura T, et al. Phys. Chem. Chem. Phys., 2005,7:4157-4163

    14. [14]

      [14] Kuang D B, Brillet J, Chen P, et al. ACS Nano, 2008.2: 1113-1116

    15. [15]

      [15] Shankar K, Bandara J, Paulose M, et al. Nano Lett., 2008,8: 1654-1659

    16. [16]

      [16] Xiong L, Yang Y, Mai J X, et al. Chem. Eng. J., 2010,2: 313-320

    17. [17]

      [17] Niu H Y, Wang J M, Shi Y L, et al. Micropor. Mesopor. Mat., 2009,1-3:28-35

    18. [18]

      [18] Chen S F, Li J P, Qian K, et al. Nano Res., 2010,3(4):244 -255

    19. [19]

      [19] WANG Zhu-Mei(王竹梅), LI Yue-Ming(李月明), YANG Xiao-Jing(杨小静), et al. Chinese J. Inorg. Chem. (无机化学学报), 2007,23:225-230

    20. [20]

      [20] LI Xue-Ting(李雪亭), ZANG Peng-Yuan(臧鹏远), YE Qiu-Ming(叶秋明), et al. Chinese J. Inorg. Chem. (无机化学学报), 2011,27:1550-1554

    21. [21]

      [21] Zhang Q H, Gao L, Guo J K. Appl. Catal. B: Environ., 2000,26:207-215

    22. [22]

      [22] Matsubara K, Kelly K L, Sakaia N, et al. J. Mater. Chem., 2009,19:5526-5532

    23. [23]

      [23] Lambert S, Cellier C, Grange P, et al. J. Catal., 2004,221: 335-346

    24. [24]

      [24] Luebke D R, Vadlamannati L S, Kovalchuk V I, et al. Appl. Catal. B: Environ., 2002,35:211-217

  • 加载中
    1. [1]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    2. [2]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    5. [5]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    9. [9]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    10. [10]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    11. [11]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    12. [12]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(0)
  • Abstract views(790)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return