Citation:
HAN Yu-Xiang, SHAO Yun, WAN Hai-Qin, XU Zhao-Yi, ZHENG Shou-Rong. Catalytic Hydrodechlorination of 1, 2-Dichloroethane over TiO2 Nanotube Supported Pd-Ag Catalysts[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(3): 481-486.
doi:
10.11862/CJIC.2014.053
-
TiO2 nanotube supported Pd-Ag catalysts were prepared by the photodeposition and impregnation methods, and the catalystic hydrodechlorination of 1, 2-dichloroethane was investigated. The characterization results of UV-Vis, XRD and XPS showed that given similar Ag loading amount, much higher Ag enrichment was identified on the catalyst prepared by the photodeposition method than by the impregnation method. Accordingly, the catalyst prepared by the photodeposition method exhibit markedly enhanced ethylene selectivity for the hydrodechlorination of 1, 2-dichloroethane. Additionally, the ethylene selectivity was gradually increased with the Ag loading content.
-
-
-
[1]
[1] Vogel M T, Criddle C S, McCarty L P. Environ. Sci. Technol., 1987,21:722-736
-
[2]
[2] Goldberg D E. Sci. Total. Environ., 1991,100:17-28
-
[3]
[3] Pedro M Z, Casas A J, Comez-Sainero M L, et al. Appl. Catal. B: Environ., 2010,98:79-85
-
[4]
[4] Kim I D, Allen T D. Ind. Eng. Chem. Res., 1997,36:3019-3026
-
[5]
[5] Han Y X, Zhou J, Wang W J, et al. Appl. Catal. B: Environ., 2012,125:172-179
-
[6]
[6] Vadlamannati S L, Kovalchuk I V, d'Itri L J. Catal Let., 1999,58:173-178
-
[7]
[7] Lambert S, Ferauche F, Brasseur A, et al. Catal. Today, 2005,100:283-289
-
[8]
[8] Heinrichs B, Schoebrechts P J, Pirard P J. J. Catal., 2001, 200:309-320
-
[9]
[9] Srebowata A, Lisowski W, Sobczak W J, et al. Catal. Today, 2011,175:576-584
-
[10]
[10] Kitano M, Nakajima K, Kondo J N, et al. J. Am. Chem. Soc., 2010,132:6622-6623
-
[11]
[11] Liu Z Y, Zhang X T, Nishimoto S S, et al. J. Phys. Chem. C, 2008,112:253-259
-
[12]
[12] Chen H, Shao Y, Xu Z Y, et al. Appl. Catal. B: Environ., 2011,105:255-262
-
[13]
[13] Ohsaki Y, Masaki N, Kitamura T, et al. Phys. Chem. Chem. Phys., 2005,7:4157-4163
-
[14]
[14] Kuang D B, Brillet J, Chen P, et al. ACS Nano, 2008.2: 1113-1116
-
[15]
[15] Shankar K, Bandara J, Paulose M, et al. Nano Lett., 2008,8: 1654-1659
-
[16]
[16] Xiong L, Yang Y, Mai J X, et al. Chem. Eng. J., 2010,2: 313-320
-
[17]
[17] Niu H Y, Wang J M, Shi Y L, et al. Micropor. Mesopor. Mat., 2009,1-3:28-35
-
[18]
[18] Chen S F, Li J P, Qian K, et al. Nano Res., 2010,3(4):244 -255
-
[19]
[19] WANG Zhu-Mei(王竹梅), LI Yue-Ming(李月明), YANG Xiao-Jing(杨小静), et al. Chinese J. Inorg. Chem. (无机化学学报), 2007,23:225-230
-
[20]
[20] LI Xue-Ting(李雪亭), ZANG Peng-Yuan(臧鹏远), YE Qiu-Ming(叶秋明), et al. Chinese J. Inorg. Chem. (无机化学学报), 2011,27:1550-1554
-
[21]
[21] Zhang Q H, Gao L, Guo J K. Appl. Catal. B: Environ., 2000,26:207-215
-
[22]
[22] Matsubara K, Kelly K L, Sakaia N, et al. J. Mater. Chem., 2009,19:5526-5532
-
[23]
[23] Lambert S, Cellier C, Grange P, et al. J. Catal., 2004,221: 335-346
-
[24]
[24] Luebke D R, Vadlamannati L S, Kovalchuk V I, et al. Appl. Catal. B: Environ., 2002,35:211-217
-
[1]
-
-
-
[1]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[2]
Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[5]
Yucai Zhang , Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006
-
[6]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[8]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[9]
Hailian Cheng , Shuaiqiang Jia , Chunjun Chen , Haihong Wu , Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023
-
[10]
Jiayi Yang , Jianxiu Hao , Huacong Zhou , Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105
-
[11]
Xiaolong Li , Shiqi Zhong , Xiangfeng Wei , Zhiqiang Liu , Pan Zhan , Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013
-
[12]
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
-
[13]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[14]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[15]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[16]
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
-
[17]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[18]
Jianan Zhang , Mengzhen Xu , Jiamin Liu , Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068
-
[19]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[20]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(790)
- HTML views(70)
Login In
DownLoad: