Citation: LI Yan, ZHUANG Quan-Chao, WANG Hong-Tao, WU Wen-Wei, ZHAO Yu-Long, QIANG Ying-Huai. Electrode Interface Characteristics of TiO2 Solar Cells with Surface Modification[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 763-769. doi: 10.11862/CJIC.2014.052 shu

Electrode Interface Characteristics of TiO2 Solar Cells with Surface Modification

  • Corresponding author: ZHUANG Quan-Chao, 
  • Received Date: 8 July 2013
    Available Online: 25 September 2013

    Fund Project: 学科创新能力提升基金(No.2013XK04)资助项目。 (No.2013XK04)

  • TiO2 nanomaterial with typital anatase was prepared by hydrothermal method. Asurface modification method was carried out by over layer coating on the surface of TiO2 thin film using Cr(NO3)3. The surface phase and morphology of electrodes were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that a layer of chromium oxide with larger particles was coated on TiO2 thin film and the electrode remains homogeneous porous structure. The current-voltage (I-V) curves revealed that short circuit current and photoelectric transfer efficiency of the optimal modified electrode enhanced by 31.1% and 40.4% respectively more than before. Interface characteristics of cells were discussed using EIS. Seen from the results, the resistance of TiO2/dye/electrolyte interface of modified electrode was much larger than before at the same bias. It is indicated that chromium oxide coating on TiO2 thin film suppressed the charge recombination reactions and improved the performance of DSSCs.
  • 加载中
    1. [1]

      [1] O'Regan B, Grtzel M. Nature, 1991, 353:737-740

    2. [2]

      [2] Grtzel M. J. Photochem. Photobiol. C, 2003, 4:145-153

    3. [3]

      [3] Grtzel M. Inorg. Chem., 2005, 44(20):6841-6851

    4. [4]

      [4] Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334:629-634

    5. [5]

      [5] LI Sheng-Jun(李胜军), LIN Yuan(林原), YANG Shi-Wei(杨 世伟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(11):1965-1969

    6. [6]

      [6] XU Bo(徐波), Wu Ji-Huai(吴季怀), FAN Le-Qing(范乐庆), et al. Chinese J. Inorg. Chem.(无机化学学报), 2008, 24(11): 1900-1906

    7. [7]

      [7] LI Li(李丽), ZHANG Gui-You(张贵友), CHEN Ren-Jie(陈人 杰), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2009, 30(11):2247-2251

    8. [8]

      [8] Zhang L, Shi Y H, Peng S J, et al. J. Photochem. Photobiol. A: Chem., 2008, 197:260-265

    9. [9]

      [9] Wu S J, Han H W, Tai Q D, et al. J. Power Sources, 2008, 182:119-123

    10. [10]

      [10] Zhang X, Sutanto I, Taguchi T, et al. Sol. Energy Mater. Sol. C, 2003, 80:315-326

    11. [11]

      [11] Kim K E, Jang S R, Park J, et al. Sol. Energy Mater. Sol. C, 2007, 91:366-370

    12. [12]

      [12] Yang S, Kou H, Song S, et al. Colloids. Surf. A: Physicochem. Eng., 2009, 340:182-186

    13. [13]

      [13] Kim J T, Kim S H. Sol. Energy. Mater. Sol. C, 2011, 95:336-339

    14. [14]

      [14] Wang Z S, Yanagida M, Sayama K, et al. Chem. Mater., 2006, 18(12):2912-2916

    15. [15]

      [15] Park K H, Jin E M, Gu H B, et al. Mater. Lett., 2009, 63: 2208-2211

    16. [16]

      [16] Lee B K, Kim J J. Curr. Appl. Phys., 2009, 9:404-408

    17. [17]

      [17] XU Xue-Qing(徐雪青), XU Gang(徐刚). Sci. Sin. Chim.(中 国科学:化学), 2011, 41(1):37-43

    18. [18]

      [18] Morrison S R. Electrochemistry at Semiconductor and Oxid-ized Metal Elecreode. New York: Plenum Press, 1980:401

    19. [19]

      [19] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, et al. Sol. Energ. Mater. Sol. C, 2005, 87:117-131

    20. [20]

      [20] Bisquert J. J. Phys. Chem. B, 2002, 106:325-333

    21. [21]

      [21] Bisquert J, Vikhrenko V S. J. Phys. Chem. B, 2004, 108(7): 2313-2322

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    9. [9]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(0)
  • Abstract views(523)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return