Citation: CHEN Hao-Ying, ZHANG Rui-Zhi, ZHAO Pei, CAO Li-Ke. Influence of the Layer Thickness on the Thermoelectric Properties of TiS2 Nanosheets:a Theoretical Study[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 506-510. doi: 10.11862/CJIC.2014.050 shu

Influence of the Layer Thickness on the Thermoelectric Properties of TiS2 Nanosheets:a Theoretical Study

  • Received Date: 1 July 2013
    Available Online: 1 October 2013

    Fund Project: 国家自然科学基金(No.11104220) (No.11104220)陕西省自然科学基础研究计划(No.2011JQ1012) (No.2011JQ1012)陕西省教育厅自然科学基金专项(No.11JK0522)资助 项目。 (No.11JK0522)

  • With the discovery of graphene, two dimensional nanosheets are of great interest due to their novel physics. Among these 2D systems, transition metal sulficid nanosheets with strong correlated nature and ample compositional variations attract more and more attention. Here, by using density functional theory calculations and semi-classic Boltzmann transport equations, we investigated the influence of layer thickness on thermoelectric properties of TiS2 nanosheets, whose courtpart bulk material already shows some promising thermoelectric performance. Our theoretical results show that when the thickness is greater than the critical thickness for electronic quantum confinement and also is smaller than the critical thickness for phonon confinement, the TiS2 nanosheets will have better thermoelectric performance than its counterpart bulk. These finding is helpful for design novel high performance thermoelectric materials.
  • 加载中
    1. [1]

      [1] Rogers J A, Lagally M G, Nuzzo R G. Nature, 2011,477:45-53

    2. [2]

      [2] Nicolosi V, Chhowalla M, Kanatzidis M, et al. Science, 2013,340:1226419-18

    3. [3]

      [3] Butler S Z, Butler S Z, Hollen S M, et al. ACS Nano, 2013, 7:2898-2926

    4. [4]

      [4] Radisavljevic B, Radenovic A, Brivio J, et al. Nat. Nano, 2011,6:147-150

    5. [5]

      [5] Kuc A, Zibouche N, Heine T, et al. Phys. Rev. B, 2011,83: 245213-4

    6. [6]

      [6] Molina-Sánchez A, Wirtz L. Phys. Rev. B, 2011,84:155413-8

    7. [7]

      [7] Scalise E, Houssa M, Pourtois G, et al. Nano Res., 2012,5:43-48

    8. [8]

      [8] Ramasubramaniam A, Naveh D, Towe E, et al. Phys. Rev. B, 2011,84:205325-10

    9. [9]

      [9] Chhowalla M, Shin H S, Eda G, et al. Nat. Chem., 2013,5: 263-275

    10. [10]

      [10] Dresselhaus M, Chen G, Tang M, et al. Adv. Mater., 2007, 19:1043-1053

    11. [11]

      [11] Hicks L D, Dresselhaus M S. Phys. Rev. B, 1993,47:12727-12731

    12. [12]

      [12] Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001,413:597-602

    13. [13]

      [13] Balandin A, Wang K L. Phys. Rev. B, 1998,58:1544-1549

    14. [14]

      [14] Imai H, Shimakawa Y, Kubo Y. Phys. Rev. B, 2001,64: 241104(4pages)

    15. [15]

      [15] Koumoto K, Wang Y F, Zhang R Z, et al. Ann. Rev. Mater. Res., 2010,40:363-394

    16. [16]

      [16] LU Yan(卢艳), SONG Ying(宋英), SUN Qiu(孙秋), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009,25:1682 -1685

    17. [17]

      [17] Zhang R Z, Wan C L, Wang Y F, et al. Phys. Chem. Chem. Phys., 2012,14:15641-15644

    18. [18]

      [18] Giannozzi P, Baroni S, Bonini N, et al. J. Phys.: Conden. Mat., 2009,21:395502(19pages)

    19. [19]

      [19] Sanchez K, Palacios P, Wahnon P. Phys. Rev. B, 2008,78: 235121(6pages)

    20. [20]

      [20] Kukkonen C A, Kaiser W J, Logothetis E M, et al. Phys. Rev. B, 1981,24:1691-1709

    21. [21]

      [21] Madsen G K H, Singh D J. Comput. Phys. Commun., 2006, 175:67-71

    22. [22]

      [22] Wiegers G A. Prog. Solid State Chem., 1996,24:1-139

    23. [23]

      [23] Mak K F, Lee C, Hone J, et al. Phys. Rev. Lett., 2010,105: 136805(4pages)

    24. [24]

      [24] Snyder G J, Toberer E S. Nat. Mater., 2008,7:105-114

    25. [25]

      [25] Ohta H, Kim S, Mune Y, et al. Nat. Mater., 2007,6:129-134

    26. [26]

      [26] Pallecchi I, Codda M, Galleani E, et al. Phys. Rev. B, 2010, 81:085414(9pages)

    27. [27]

      [27] Wang Y, Lee K H, Hyuga H, et al. Appl. Phys. Lett., 2007, 91:242102(3pages)

    28. [28]

      [28] Liu X J, Zhang G, Pei Q X, et al. Appl. Phys. Lett., 2013, 103:133113(4pages)

    29. [29]

      [29] Zhang R Z, Li J C, Wang C L, et al. J. Am. Ceram. Soc., 2010,93:1677-1681

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(376)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return