Citation: HAO Pei-Pei, CHEN Chang-Long, WEI Yu-Ling, MU Xiao-Hui. Tin Oxide Thin Films:Synthesis and Room Temperature Gas Sensing Properties[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 451-458. doi: 10.11862/CJIC.2014.046 shu

Tin Oxide Thin Films:Synthesis and Room Temperature Gas Sensing Properties

  • Corresponding author: CHEN Chang-Long, 
  • Received Date: 19 July 2013
    Available Online: 15 October 2013

    Fund Project:

  • Dense tin oxide films were solvothermally grown from the tin oxide seed films fabricated on glass substrates by sol-gel technique. The morphology and crystal structure of the tin oxide films were characterized by using scanning electron microscopy and X-ray diffraction techniques. The results reveal that the films are composed of cassiterite-type tin oxide crystals with size of 7~10 nm. The film quality can be improved significantly when the sodium dodecylbenzenesulfonate is used as the surfactant during the solvothermal reaction. The gas sensor, which is directly connected tin oxide films to the test circuits by using tweezers with special gripping surfaces, exhibits good sensing performance to nitrogen dioxide gas under mild testing conditions, i.e. room temperature, ambient pressure, and dry air background. The sensor can achieve a detection limit of 0.5 μL·L-1.
  • 加载中
    1. [1]

      [1] Vomiero A, Bianchi S, Comini E, et al. Cryst. Growth Des., 2007,7:2500-2504

    2. [2]

      [2] Ghimbeu C M, Lumbreras M, Siadat M, et al. Mat. Sci. Semicon. Proc., 2010,13:1-8

    3. [3]

      [3] Tamiolakis I, Lykakis I N, Katsoulidis A P, et al. Chem. Mater., 2011,23:4204-4211

    4. [4]

      [4] Kim Y J, Kim K H, Kang P, et al. Langmuir., 2012,28: 10620-10626

    5. [5]

      [5] Gavagnin R, Biasetto L, Pinna F, et al. Appl. Catal. B: Environ., 2002,38:91-99

    6. [6]

      [6] Zhu J J, Lu Z H, Aruna S T, et al. Chem. Mater., 2000,12: 2557-2566

    7. [7]

      [7] Gardeshzadeh A R, Raissi B. Mat. Sci. Semicon. Proc., 2010, 13:151-155

    8. [8]

      [8] Gong J W, Chen Q F, Fei W F, et al. Sens. Actuators B., 2004,102:117-125.

    9. [9]

      [9] Ding J J, Yan X B, Li J, et al. ACS. Appl. Mater. Interfaces, 2011,3:4299-4305

    10. [10]

      [10] Fang Y K, Lee J J. Thin Solid Films, 1989,169:51-56

    11. [11]

      [11] Chacko S, Philip N S, Gopchandran K G, et al. Appl. Surf. Sci., 2008,254:2179-2186

    12. [12]

      [12] Ghosh S, Khan G G, Mandal K. ACS Appl. Mater. Interfaces, 2012,4:2048-2056

    13. [13]

      [13] Pan J, Song X F, Zhang J, et al. J. Phys. Chem. C, 2011, 115:22225-22231

    14. [14]

      [14] Chen Z W, Pan D Y, Zhao B, et al. ACS Nano., 2010,4: 1202-1208

    15. [15]

      [15] da Silva V D L, de Andrade A, Scalvi L V A, et al. Mater. Chem. Phys., 2012,134:994-1000

    16. [16]

      [16] Mishra S, Ghanshyam C, Ram N, et al. Bull. Mater. Sci., 2002,25:231-234

    17. [17]

      [17] Rella R, Serra A, Siciliano P, et al. Sens. Actuators B, 1997, 44:462-467

    18. [18]

      [18] Acciarri M, Canevali C, Mari C M, et al. Chem. Mater., 2003,15:2646-2650

    19. [19]

      [19] Gong S P, Xia J, Liu J Q, et al. Sens. Actuators B, 2008, 134:57-61

    20. [20]

      [20] Rajpure K Y, Kusumade M N, Neumann-Spallart M N, et al. Mater. Chem. Phys., 2000,64:184-188

    21. [21]

      [21] Ramos L, Lubensky T C, Dan N, et al. Science, 1999,286: 2325-2328

    22. [22]

      [22] Jang J H, Park J H, Oh S G. J. Ceram. Process. Res., 2009, 10:783-790

    23. [23]

      [23] Chen C L, Wei Y L, Sun G X, et al. Chem. Asian J., 2012, 7:1018-1025

    24. [24]

      [24] Gyger F, Hübner M, Feldmann C, et al. Chem. Mater., 2010,22:4821-4827

    25. [25]

      [25] DArienzo M, Armelao L, Cacciamani A, et al. Chem. Mater., 2010,22:4083-4089

    26. [26]

      [26] Chen C L, Wei Y L, Chen D R, et al. Mater. Chem. Phys., 2011,125:299-304

    27. [27]

      [27] Tocchetto A, Glisenti A. Langmuir., 2000,16:2642-2650

    28. [28]

      [28] Sun C T, Xue D F. J. Phys. Chem C., 2013,117:19146- 19153

    29. [29]

      [29] Michiya M, Serizawa, Kishida A, et al. Bioconjugate Chem., 2002,13:23-28

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    5. [5]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    10. [10]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    11. [11]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    14. [14]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    15. [15]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    16. [16]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    17. [17]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

Metrics
  • PDF Downloads(0)
  • Abstract views(545)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return