Citation: DUAN Song, ZHANG Lu-Lu, YANG Xue-Lin, PENG Gang, HUANG Yun-Hui, QIN Lei, LI Ming, NI Shi-Bing. Research on Two-Phase Carbon Modified Li2FeSiO4 as Cathode Material[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 345-352. doi: 10.11862/CJIC.2014.038 shu

Research on Two-Phase Carbon Modified Li2FeSiO4 as Cathode Material

  • Corresponding author: ZHANG Lu-Lu,  YANG Xue-Lin, 
  • Received Date: 20 July 2013
    Available Online: 30 September 2013

    Fund Project:

  • Two-phase carbon modified Li2FeSiO4 composites (Li2FeSiO4/(C+G)) were synthesized via solid-state reaction assisted with refluxing. Activated natural graphite was chosen as carbon source. The phase and the microstructure of Li2FeSiO4/(C+G) were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and Raman spectrometry (Raman). The effect of activated graphite content on the electrochemical performance of Li2FeSiO4/(C+G) was also investigated. The results show that activated graphite exists in Li2FeSiO4/(C+G) samples in the form of amorphous carbon as well as graphite crystallite. Li2FeSiO4/(C+G) composite prepared with 5wt% activated graphite achieved the excellent electrochemical performance with a higher initial discharge capacity of 170.3 mAh·g-1 and with a capacity retention ratio of 88.7% after 50 cycles.
  • 加载中
    1. [1]

      [1] Nytén A, Abouimrane A, Armand M, et al. Electrochem. Commun., 2005,7:156-160

    2. [2]

      [2] Peng G, Zhang L L, Yang X L, et al. J. Alloys Compd., 2013, 570:1-6

    3. [3]

      [3] Kamon-in O, Klysubun W, Limphirat W, et al. Physica B, 2013,416:69-75

    4. [4]

      [4] Zhou H, Einarsrud M A, Vullum-Bruer F. J. Power Sources, 2013,235:234-242

    5. [5]

      [5] Islam M S, Dominko R, Masquelier C, et al. J. Mater. Chem., 2011,21:9811-9818

    6. [6]

      [6] Chen Z, Qiu S, Cao Y, et al. J. Mater. Chem. A, 2013,1: 4988-4992

    7. [7]

      [7] Zhang S, Deng C, Yang S Y. Electrochem. Solid-State Lett., 2009,12:A136-A139

    8. [8]

      [8] Muraliganth T, Stroukoff K R, Manthiram A. Chem. Mater., 2010,22:5754-5761

    9. [9]

      [9] Gong Z L, Li Y X, He G N, et al. Electrochem. Solid-State Lett., 2008,11:A60-A63

    10. [10]

      [10] Fan X Y, Li Y, Wang J J, et al. J. Alloys Compd., 2010, 493:77-80

    11. [11]

      [11] Lv D, Wen W, Huang X, et al. J. Mater. Chem., 2011,21: 9506-9512

    12. [12]

      [12] Gong Z L, Li Y X, Yang Y. Electrochem. Solid-State Lett., 2006,9:A542-A544

    13. [13]

      [13] Guo H J, Cao X, Li X, et al. Electrochim. Acta, 2010,55: 8036-8042

    14. [14]

      [14] Li L M, Guo H J, Li X, et al. J. Power Sources, 2009,189: 45-50

    15. [15]

      [15] Deng C, Zhang S, Yang S Y. J. Alloys Compd., 2009,487: L18-L23

    16. [16]

      [16] Zhang S, Deng C, Fu B L,et al. J. Electroanal. Chem., 2010, 644:150-154

    17. [17]

      [17] Zhang S, Deng C, Fu B L, et al. Electrochim. Acta, 2010, 55:8482-8489

    18. [18]

      [18] Deng C, Zhang S, Yang S Y, et al. J. Power Sources, 2011, 196:386-392

    19. [19]

      [19] LAN Jian-Yun(兰建云), ZHAO Min-Shou(赵敏寿), WANG Yan-Zhi(王艳芝), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2011,27(8):1497-1502

    20. [20]

      [20] Liu H, Zhen Z. Russ. J. Electrochem., 2013,49:386-390

    21. [21]

      [21] YU Feng(于峰), ZHANG Jing-Jie(张敬杰), YANG Yan-Feng (杨岩峰), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25:42-46

    22. [22]

      [22] TANG Zhi-Yuan(唐致远), RUAN Yan-Li(阮艳莉). Acta Chim. Sin.(化学学报), 2005,16:1500-1504

    23. [23]

      [23] Marca M D, James D W, Robert K, et al. J. Power Sources, 2006,163:180-184

    24. [24]

      [24] Huang X, Li X, Wang H, et al. Solid State Ionics, 2010,181: 1451-1455

    25. [25]

      [25] Zhang L, Wang S, Cai D, et al. Electrochim. Acta, 2013,91: 108-113

    26. [26]

      [26] Yang X L, Mou F, Zhang L L, et al. J. Power Sources, 2012, 204:182-186

    27. [27]

      [27] Nishimura S I, Hayase S, Kanno R, et al. J. Am. Chem. Soc., 2008,130:13212-13213

    28. [28]

      [28] Kolesov B A, Geiger C A. Phys. Chem. Miner., 1998,25:142

    29. [29]

      [29] Bard A J, Faulkner L R. Electrochemical Methods. 2nd Ed. New York: John Wiley & Sons, 2001:368-416

    30. [30]

      [30] Liu H, Cao Q, Fu L J, et al. Electrochem. Commun., 2006, 8:1553-1557

    31. [31]

      [31] Cao Q, Zhang H P, Wang G J, et al. Electrochem. Commun., 2007,9:1228-1232

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(469)
  • Abstract views(694)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return