Citation: HAN Qi-Wei, ZHU Bao-Lin, TIAN Jing, SONG Juan-Juan, HU Xiao-Jing, SHI Yu-Kun, HUANG Wei-Ping. Synthesis and Catalytic Performance for CO Oxidation of CuO Modified-TiO2 Nanotubes with High Thermal Stability via Functionalized Sol Modification[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 573-578. doi: 10.11862/CJIC.2014.026 shu

Synthesis and Catalytic Performance for CO Oxidation of CuO Modified-TiO2 Nanotubes with High Thermal Stability via Functionalized Sol Modification

  • Received Date: 2 April 2013
    Available Online: 15 July 2013

    Fund Project: 国家自然科学基金(No.21071086,21301098) (No.21071086,21301098)天津市自然科学基金青年项目(No.13JCQNJC02000) (No.13JCQNJC02000)“111计划”(No.B12015) (No.B12015)“国家大学生 创新性实验计划”(No.111005510)资助项目。 (No.111005510)

  • By using hydrogen titanate nanotubes as support and titanium sol containing copper(Ⅱ) acetate as modifying agent, CuO modified-TiO2 nanotubes (CuO/TiO2 NTs) with high thermal stability were prepared by impregnation method. The prepared materials were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), N2 absorption-desorption (BET), and temperature programed desorption (TPD). The catalytic performances for CO oxidation of the obtained samples were evaluated. Obtained results show that not only is the copper component coated on the nanotubes, but also the thermal stability of the tubular support is improved after the impregnation process. The influences of support form, atomic ratio of Cu to Ti, and calcination temperature on the catalytic performance of the prepared catalysts were also investigated. Obtained results also indicate that the CuO/TiO2 NTs (nCu:nTi=1:5) calcined at 400 ℃ exhibit the best catalytic performance.
  • 加载中
    1. [1]

      [1] Min K, Song M W, Lee C H. Appl. Catal. A, 2003,251:143-156

    2. [2]

      [2] Zheng X C, Wu S H, Wang S P, et al. Appl. Catal. A, 2005, 283:217-223

    3. [3]

      [3] MAO Dong-Sen(毛东森), TAO Li-Hua(陶丽华), WANG Qian(王倩), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(3):447-452

    4. [4]

      [4] Chary K V R, Sagar G V, Naresh D, et al. J. Phys. Chem. B, 2005,109:9437-9444

    5. [5]

      [5] Zhou H B, Huang Z, Sun C, et al. Appl. Catal. B, 2012,125: 492-498

    6. [6]

      [6] MU Jin(穆劲), CHEN Li-Li(陈丽莉), KANG Shi-Zhao(康诗 钊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28 (2):251-256

    7. [7]

      [7] Ma X D, Feng X, He X, et al. Micropor. Mesopor. Mater., 2012,158:214-218

    8. [8]

      [8] ZHANG Xue-Hong(张雪红), TANG Xing-Hua(唐星华), CHENG Xin-Sun(程新孙). Acta Phys.-Chim. Sin.(物理化学 学报), 2006,22(5):532-537

    9. [9]

      [9] QIN Liang-Sheng(秦亮生), YIN Dong-Hong(银董红), LIU Jian-Fu(刘建福), et al. Chinese J. Catal.(催化学报), 2005, 26(8):714-718

    10. [10]

      [10] Cao J L, Wang Y, Zhang T Y, et al. Appl. Catal. B, 2008, 78:120-128

    11. [11]

      [11] SHAO Qian(邵谦), WANG Xiao-Jie(王小杰), GE Sheng-Song(葛圣松), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2012,28(5):1043-1049

    12. [12]

      [12] Yao B D, Chan Y F, Zhang X Y, et al. Appl. Phys. Lett., 2003,82(2):281-283

    13. [13]

      [13] Kasuga T, Hiramatsu M, Hoson A, et al. Langmuir, 1998,14: 3160-3163

    14. [14]

      [14] Doong R A, Chang S M, Tsai C W. Appl. Catal. B, 2013 (129):48-55

    15. [15]

      [15] Xu S P, Du A J, Liu J, et al. Int. J. Hydrogen Energy, 2011, 36(11):6560-6568

    16. [16]

      [16] Nian J N, Chen S A, Tsai C C, et al. J. Phys. Chem. B, 2006,110:25817-25824

    17. [17]

      [17] Zhu B L, Zhang X X, Wang S R, et al. Micropor. Mesopor. Mater., 2007,102:333-336

    18. [18]

      [18] Zhang M, Jin Z S, Zhang J W, et al. J. Mol. Catal. A, 2004, 217:203-210

    19. [19]

      [19] Zhu B L, Li K R, Zhou J, et al. Catal. Commun., 2008,9 (14):2323-2326

    20. [20]

      [20] An H Q, Zhu B L, Li J X, et al. J. Phys. Chem. C, 2008,112 (48):18772-18775

    21. [21]

      [21] An H Q, Zhou J, Li J X, et al. Catal. Commun., 2009,11(3): 175-179

    22. [22]

      [22] An H Q, Li J X, Zhou J, et al. J. Mater. Chem., 2010,20(3): 603-610

    23. [23]

      [23] Chapelle A, Yaacob M H, Pasquet I, et al. Sensor Actuat. B, 2010,153:117-124

    24. [24]

      [24] Yu J G, Ran J R. Energy Environ. Sci., 2011,4:1364-1371

    25. [25]

      [25] Yu J G, Hai Y, Jaroniec M. J. Colloid Interf. Sci., 2011,357: 223-228

    26. [26]

      [26] Sing K S W, Everett D H, Haul R A W, et al. Pure Appl. Chem., 1985,57:603-619

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(224)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return