Citation: HAN Qi-Wei, ZHU Bao-Lin, TIAN Jing, SONG Juan-Juan, HU Xiao-Jing, SHI Yu-Kun, HUANG Wei-Ping. Synthesis and Catalytic Performance for CO Oxidation of CuO Modified-TiO2 Nanotubes with High Thermal Stability via Functionalized Sol Modification[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 573-578. doi: 10.11862/CJIC.2014.026 shu

Synthesis and Catalytic Performance for CO Oxidation of CuO Modified-TiO2 Nanotubes with High Thermal Stability via Functionalized Sol Modification

  • Received Date: 2 April 2013
    Available Online: 15 July 2013

    Fund Project: 国家自然科学基金(No.21071086,21301098) (No.21071086,21301098)天津市自然科学基金青年项目(No.13JCQNJC02000) (No.13JCQNJC02000)“111计划”(No.B12015) (No.B12015)“国家大学生 创新性实验计划”(No.111005510)资助项目。 (No.111005510)

  • By using hydrogen titanate nanotubes as support and titanium sol containing copper(Ⅱ) acetate as modifying agent, CuO modified-TiO2 nanotubes (CuO/TiO2 NTs) with high thermal stability were prepared by impregnation method. The prepared materials were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), N2 absorption-desorption (BET), and temperature programed desorption (TPD). The catalytic performances for CO oxidation of the obtained samples were evaluated. Obtained results show that not only is the copper component coated on the nanotubes, but also the thermal stability of the tubular support is improved after the impregnation process. The influences of support form, atomic ratio of Cu to Ti, and calcination temperature on the catalytic performance of the prepared catalysts were also investigated. Obtained results also indicate that the CuO/TiO2 NTs (nCu:nTi=1:5) calcined at 400 ℃ exhibit the best catalytic performance.
  • 加载中
    1. [1]

      [1] Min K, Song M W, Lee C H. Appl. Catal. A, 2003,251:143-156

    2. [2]

      [2] Zheng X C, Wu S H, Wang S P, et al. Appl. Catal. A, 2005, 283:217-223

    3. [3]

      [3] MAO Dong-Sen(毛东森), TAO Li-Hua(陶丽华), WANG Qian(王倩), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(3):447-452

    4. [4]

      [4] Chary K V R, Sagar G V, Naresh D, et al. J. Phys. Chem. B, 2005,109:9437-9444

    5. [5]

      [5] Zhou H B, Huang Z, Sun C, et al. Appl. Catal. B, 2012,125: 492-498

    6. [6]

      [6] MU Jin(穆劲), CHEN Li-Li(陈丽莉), KANG Shi-Zhao(康诗 钊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28 (2):251-256

    7. [7]

      [7] Ma X D, Feng X, He X, et al. Micropor. Mesopor. Mater., 2012,158:214-218

    8. [8]

      [8] ZHANG Xue-Hong(张雪红), TANG Xing-Hua(唐星华), CHENG Xin-Sun(程新孙). Acta Phys.-Chim. Sin.(物理化学 学报), 2006,22(5):532-537

    9. [9]

      [9] QIN Liang-Sheng(秦亮生), YIN Dong-Hong(银董红), LIU Jian-Fu(刘建福), et al. Chinese J. Catal.(催化学报), 2005, 26(8):714-718

    10. [10]

      [10] Cao J L, Wang Y, Zhang T Y, et al. Appl. Catal. B, 2008, 78:120-128

    11. [11]

      [11] SHAO Qian(邵谦), WANG Xiao-Jie(王小杰), GE Sheng-Song(葛圣松), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2012,28(5):1043-1049

    12. [12]

      [12] Yao B D, Chan Y F, Zhang X Y, et al. Appl. Phys. Lett., 2003,82(2):281-283

    13. [13]

      [13] Kasuga T, Hiramatsu M, Hoson A, et al. Langmuir, 1998,14: 3160-3163

    14. [14]

      [14] Doong R A, Chang S M, Tsai C W. Appl. Catal. B, 2013 (129):48-55

    15. [15]

      [15] Xu S P, Du A J, Liu J, et al. Int. J. Hydrogen Energy, 2011, 36(11):6560-6568

    16. [16]

      [16] Nian J N, Chen S A, Tsai C C, et al. J. Phys. Chem. B, 2006,110:25817-25824

    17. [17]

      [17] Zhu B L, Zhang X X, Wang S R, et al. Micropor. Mesopor. Mater., 2007,102:333-336

    18. [18]

      [18] Zhang M, Jin Z S, Zhang J W, et al. J. Mol. Catal. A, 2004, 217:203-210

    19. [19]

      [19] Zhu B L, Li K R, Zhou J, et al. Catal. Commun., 2008,9 (14):2323-2326

    20. [20]

      [20] An H Q, Zhu B L, Li J X, et al. J. Phys. Chem. C, 2008,112 (48):18772-18775

    21. [21]

      [21] An H Q, Zhou J, Li J X, et al. Catal. Commun., 2009,11(3): 175-179

    22. [22]

      [22] An H Q, Li J X, Zhou J, et al. J. Mater. Chem., 2010,20(3): 603-610

    23. [23]

      [23] Chapelle A, Yaacob M H, Pasquet I, et al. Sensor Actuat. B, 2010,153:117-124

    24. [24]

      [24] Yu J G, Ran J R. Energy Environ. Sci., 2011,4:1364-1371

    25. [25]

      [25] Yu J G, Hai Y, Jaroniec M. J. Colloid Interf. Sci., 2011,357: 223-228

    26. [26]

      [26] Sing K S W, Everett D H, Haul R A W, et al. Pure Appl. Chem., 1985,57:603-619

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    3. [3]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    7. [7]

      Wenwen Ma Lian Kong Jinyang Chu Li Ma Ziqing Ma Heyu Cheng Xinyuan Li Zhan Yu Zhen Zhao . Digitalization-Driven Olefin Production: Digital Design of Catalysts for CO2-Assisted Oxidation Dehydrogenation of Ethane to Ethylene. University Chemistry, 2026, 41(1): 363-372. doi: 10.12461/PKU.DXHX202506055

    8. [8]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    12. [12]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    16. [16]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    19. [19]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    20. [20]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return