Citation: HUANG Cheng, CHANG Ting, ZHANG Yue, KANG Shi-Zhao, LI Xiang-Qing, MU Jin. Photocatalytic Activity and Optoelectronic Property of Porphyrin Tin-Sensitized TiO2 Nanotubes[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 331-336. doi: 10.11862/CJIC.2014.007 shu

Photocatalytic Activity and Optoelectronic Property of Porphyrin Tin-Sensitized TiO2 Nanotubes

  • Corresponding author: MU Jin, 
  • Received Date: 3 July 2013
    Available Online: 2 September 2013

    Fund Project:

  • TiO2 nanotubes sensitized with trans-dihydroxo[5,10,15,10-tetraphenyl porphyrin] tin(Ⅳ) (abbreviated to SnTPP) were prepared. The photocatalytic activity of SnTPP-sensitized TiO2 nanotubes were evaluated by using p-nitrophenol as a model contaminant under visible light irradiation. Meanwhile, SnTPP-sensitized TiO2 nanoparticles were selected as a reference substance to explore the effect of morphology on the photocatalytic activity of catalysts. The experimental results show that introduction of SnTPP can significantly enhance the visible light photocatalytic activity of TiO2 nanotubes. And TiO2 nanotubes show higher sensitizing effect of SnTPP than TiO2 nanoparticles, indicating that the morphology of a catalyst plays an important role in the photocatalytic process. In addition, the photoelectrochemical behavior of SnTPP-sensitized TiO2 nanotubes was examined and related with the photocatalytic activity. Finally, the sensitizing mechanism of SnTPP was discussed preliminarily.
  • 加载中
    1. [1]

      [1] Kuang D B, Brillet J, Chen P, et al. ACS Nano, 2008,2:1113 -1116

    2. [2]

      [2] Lei B X, Liao J Y, Zhang R, et al. J. Phys. Chem. C, 2010, 114:15228-15233

    3. [3]

      [3] Lee C Y, Hupp J T. Langmuir, 2010,26:3760-3765

    4. [4]

      [4] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2005,5: 191-195

    5. [5]

      [5] Li H Q, Qu J, Cui Q Z, et al. J. Mater. Chem., 2011,21:9487 -9490

    6. [6]

      [6] Berger S, Ghicov A, Nah Y C, et al. Langmuir, 2009,25:4841 -4844

    7. [7]

      [7] Popat K C, Eltgroth M, LaTempa T J, et al. Small, 2007,3: 1878-1881

    8. [8]

      [8] El-Bahy Z M, Ismail A A, Mohamed R M. J. Hazard. Mater., 2009,166:138-143

    9. [9]

      [9] Binitha N N, Yaakob Z, Reshmi M R, et al. Catal. Today, 2009,147S:S76-S80

    10. [10]

      [10] Ao Y, Xu J, Fu D, et al. J. Hazard. Mater., 2009,167:413- 417

    11. [11]

      [11] FENG Cai-Xia(冯彩霞), WANG Yan(王岩), JIN Zhen-Sheng (金振声), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2008,24:633-638

    12. [12]

      [12] HUANG Dong-sheng(黄东升), CHEN Chao-Feng(陈朝凤), LI Yu-hua(李玉花). Chinese J. Inorg. Chem.(无机化学学 报), 2007,23:738-742

    13. [13]

      [13] Wang Q, Yang X, Chi L, et al. Electrochim. Acta, 2013,91: 330-336

    14. [14]

      [14] Park H, Yang C, Choi W. J. Power Sources, 2012,216:36-41

    15. [15]

      [15] LUO Yun(罗云), SHI Yong-Ping(史永平), YAO Gui-Ping(姚 桂平), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28:1139-1144

    16. [16]

      [16] CAI Jin-Hua(蔡金华), HUANG Jin-Wang(黄锦汪), YE Yuan-Jian(叶元坚), et al. Chin. J. Catal.(催化学报), 2009, 30:440-446

    17. [17]

      [17] YAN Ya(严亚), LU Ying(吕瑛), XIA Yi(夏怡), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27:1999-2004

    18. [18]

      [18] Zhu K, Neale N R, Miedaner A, et al. Nano Lett., 2007,7: 69-74

    19. [19]

      [19] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006,6: 215-218

    20. [20]

      [20] Liu C Y, Pan H L. Science, 1993,261:897-899

    21. [21]

      [21] Hodos M, Horváth E, Haspel H, et al. Chem. Phys. Lett., 2004,399:512-515

    22. [22]

      [22] Tian B L, Zhang X T, Dai S X, et al. J. Phys. Chem. C, 2008,112:5361-5364

    23. [23]

      [23] Nian J N, Chen S A, Tsai C C, et al. J. Phys. Chem. B, 2006,110:25817-25824

    24. [24]

      [24] Tsai C C, Teng H. Chem. Mater., 2006,18:367-373

    25. [25]

      [25] Nian J N, Teng H. J. Phys. Chem. B, 2006,110:4193- 4198

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(260)
  • Abstract views(714)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return