Citation: CUI Yu-Min, HONG Wen-Shan, LI Hui-Quan, WU Xing-Cai, FAN Su-Hua, ZHU Liang-Jun. Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 431-441. doi: 10.11862/CJIC.2014.001 shu

Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol

  • Corresponding author: LI Hui-Quan, 
  • Received Date: 3 May 2013
    Available Online: 8 October 2013

    Fund Project:

  • BiOI/Bi2WO6 photocatalysts with various BiOIamounts were prepared by a simple deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and low temperature nitrogen adsorption. The photocatalytic performance of BiOI/Bi2WO6 catalysts was evaluated using the photodegradation of methyl orange (MO) and phenol in an aqueous solution under UVand visible light irradiation. The results indicate that compared with commercial Degussa P25 and pure Bi2WO6, the 13.2% BiOI/Bi2WO6 photocatalyst shows much higher UVand visible light photocatalytic performance. The obviously increased photocatalytic activity could be mainly attributed to the effective transfer of the photogenerated electrons and holes at the interface of Bi2WO6 and BiOI, which reduces the recombination of electron-hole pairs. Atransfer process of photogenerated carriers is proposed based on the band structures of BiOIand Bi2WO6. Radical scavengers experiments demonstrate that ·OH, h+, ·O2-and H2O2, especially h+, together dominate the photodegradation process of MOand phenol.
  • 加载中
    1. [1]

      [1] Chen X B, Liu L, Yu P Y, et al. Science, 2011,331(6018): 746-750

    2. [2]

      [2] Mills A, Hazafy D. Chem. Commun., 2012,48(4):525-527

    3. [3]

      [3] Oncescu T, Stefan M I, Oancea P. Environ. Sci. Pollut. Res., 2010,17(5):1158-1166

    4. [4]

      [4] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(12):2597-2604

    5. [5]

      [5] Sério S, Jorge M E M, Coutinho M L, et al. Chem. Phys. Lett., 2011,508(1/2/3):71-75

    6. [6]

      [6] Nonoyama T, Kinoshita T, Higuchi M, et al. J. Am. Chem. Soc., 2012,134(21):8841-8847

    7. [7]

      [7] Chen S F, Zhang S J, Liu W, et al. J. Hazard. Mater., 2008, 155(1/2):320-326

    8. [8]

      [8] Li Y Z, Fan Y N, Chen Y. J. Mater. Chem., 2002,12(5): 1387-1390

    9. [9]

      [9] Carretero-Genevrier A, Boissiere C, Nicole L, et al. J. Am. Chem. Soc., 2012,134(26):10761-10764

    10. [10]

      [10] Obregón Alfaro S, Martínez-de la Cruz1 A. Appl. Catal. A: Gen., 2010,383(1/2):128-133

    11. [11]

      [11] Mann A K P, Skrabalak S E. Chem. Mater., 2011,23(4): 1017-1022

    12. [12]

      [12] Wu D X, Zhu H T, Zhang C Y, et al. Chem. Commun., 2010, 46(38):7250-7252

    13. [13]

      [13] Amano F, Nogami K, Tanaka M, et al. Langmuir, 2010,26 (10):7174-7180

    14. [14]

      [14] Huang Y, Ai Z, Ho W, et al. J. Phys. Chem. C, 2010,114 (14):6342-6349.

    15. [15]

      [15] Min Y L, Zhang K, Chen Y C, et al. Sep. Purif. Technol., 2012,92(5):115-120

    16. [16]

      [16] Xiao Q, Zhang J, Xiao C, et al. Catal. Commun., 2008,9 (6):1247-1253

    17. [17]

      [17] Zhang X, Zhang L Z, Xie T F, et al. J. Phys. Chem. C, 2009,113(17):7371-7378

    18. [18]

      [18] Chen L, Yin S F, Luo S L, et al. Ind. Eng. Chem. Res., 2012,51(19):6760-6768

    19. [19]

      [19] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264(1): 581-588

    20. [20]

      [20] Zhang Z J, Wang W Z, Wang L, et al. Appl. Mater. Interfaces, 2012,4(2):593-597

    21. [21]

      [21] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76(9):1185-1191

    22. [22]

      [22] Cao J, Xu B Y, Luo B D, et al. Catal. Commun., 2011,13(1): 63-68

    23. [23]

      [23] Galceran M, Pujol M C, Zaldo C, et al. J. Phys. Chem. C, 2009,113(35):15497-15506

    24. [24]

      [24] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008, 112(3):747-753

    25. [25]

      [25] Song X C, Zheng Y F, Ma R, et al. J. Hazard. Mater., 2011,192(1):186-191

    26. [26]

      [26] Cao J, Xu B Y, Lin H L, et al. Chem. Eng. J., 2012,185/186 (6):91-97

    27. [27]

      [27] Zhang L, Wang W Z, Zhou L, et al. Appl. Catal. B: Environ., 2009,90(3/4):458-462

    28. [28]

      [28] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959

    29. [29]

      [29] Chen S F, Liu Y Z. Chemosphere, 2007,67(5):1010-1017

    30. [30]

      [30] Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S. Polym. Degrad. Stabil., 2010,95(9):1894-1902

    31. [31]

      [31] Zhang H. Lü X J, Li Y M, et al. ACS Nano, 2008,2(7):1487- 1491

    32. [32]

      [32] Morales W, Cason M, Aina O, et al. J. Am. Ceram. Soc., 2008,130(20):6318-6319

    33. [33]

      [33] Hao R, Xiao X, Zuo X X, et al. J. Hazard. Mater., 2012, 209/210(5):137-145

    34. [34]

      [34] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44(4):1392-1398

    35. [35]

      [35] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43(21):8361-8366

    36. [36]

      [36] Zhang N, Liu S Q, Fu X Z, et al. J. Phys. Chem. C, 2011, 115(18):9136-9145

    37. [37]

      [37] Helali N, Bessekhouad Y, Bouguelia A, et al. J. Hazard. Mater., 2009,168(1):484-492

    38. [38]

      [38] Li X N, Huang R K, Hu Y H, et al. Inorg. Chem., 2012,51 (11):6245-6250

    39. [39]

      [39] Guan M L, Ma D K, Hu S W, et al. Inorg. Chem., 2011,50(3): 800-805

    40. [40]

      [40] Tang J W, Zou Z G, Ye J H. J. Phys. Chem. B, 2003,107 (51):14265-14269

    41. [41]

      [41] Yu J G, Yu H G, Cheng B, et al. J. Phys. Chem. B, 2003, 107(50):13871-13879

    42. [42]

      [42] Jing L Q, Qu Y C, Wang B Q, et al. Sol. Energy Mat. Sol. Cells., 2006,90(12):1773-1787

  • 加载中
    1. [1]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    4. [4]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    20. [20]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(0)
  • Abstract views(2190)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return