Citation: CUI Yu-Min, HONG Wen-Shan, LI Hui-Quan, WU Xing-Cai, FAN Su-Hua, ZHU Liang-Jun. Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 431-441. doi: 10.11862/CJIC.2014.001 shu

Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol

  • Corresponding author: LI Hui-Quan, 
  • Received Date: 3 May 2013
    Available Online: 8 October 2013

    Fund Project:

  • BiOI/Bi2WO6 photocatalysts with various BiOIamounts were prepared by a simple deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and low temperature nitrogen adsorption. The photocatalytic performance of BiOI/Bi2WO6 catalysts was evaluated using the photodegradation of methyl orange (MO) and phenol in an aqueous solution under UVand visible light irradiation. The results indicate that compared with commercial Degussa P25 and pure Bi2WO6, the 13.2% BiOI/Bi2WO6 photocatalyst shows much higher UVand visible light photocatalytic performance. The obviously increased photocatalytic activity could be mainly attributed to the effective transfer of the photogenerated electrons and holes at the interface of Bi2WO6 and BiOI, which reduces the recombination of electron-hole pairs. Atransfer process of photogenerated carriers is proposed based on the band structures of BiOIand Bi2WO6. Radical scavengers experiments demonstrate that ·OH, h+, ·O2-and H2O2, especially h+, together dominate the photodegradation process of MOand phenol.
  • 加载中
    1. [1]

      [1] Chen X B, Liu L, Yu P Y, et al. Science, 2011,331(6018): 746-750

    2. [2]

      [2] Mills A, Hazafy D. Chem. Commun., 2012,48(4):525-527

    3. [3]

      [3] Oncescu T, Stefan M I, Oancea P. Environ. Sci. Pollut. Res., 2010,17(5):1158-1166

    4. [4]

      [4] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(12):2597-2604

    5. [5]

      [5] Sério S, Jorge M E M, Coutinho M L, et al. Chem. Phys. Lett., 2011,508(1/2/3):71-75

    6. [6]

      [6] Nonoyama T, Kinoshita T, Higuchi M, et al. J. Am. Chem. Soc., 2012,134(21):8841-8847

    7. [7]

      [7] Chen S F, Zhang S J, Liu W, et al. J. Hazard. Mater., 2008, 155(1/2):320-326

    8. [8]

      [8] Li Y Z, Fan Y N, Chen Y. J. Mater. Chem., 2002,12(5): 1387-1390

    9. [9]

      [9] Carretero-Genevrier A, Boissiere C, Nicole L, et al. J. Am. Chem. Soc., 2012,134(26):10761-10764

    10. [10]

      [10] Obregón Alfaro S, Martínez-de la Cruz1 A. Appl. Catal. A: Gen., 2010,383(1/2):128-133

    11. [11]

      [11] Mann A K P, Skrabalak S E. Chem. Mater., 2011,23(4): 1017-1022

    12. [12]

      [12] Wu D X, Zhu H T, Zhang C Y, et al. Chem. Commun., 2010, 46(38):7250-7252

    13. [13]

      [13] Amano F, Nogami K, Tanaka M, et al. Langmuir, 2010,26 (10):7174-7180

    14. [14]

      [14] Huang Y, Ai Z, Ho W, et al. J. Phys. Chem. C, 2010,114 (14):6342-6349.

    15. [15]

      [15] Min Y L, Zhang K, Chen Y C, et al. Sep. Purif. Technol., 2012,92(5):115-120

    16. [16]

      [16] Xiao Q, Zhang J, Xiao C, et al. Catal. Commun., 2008,9 (6):1247-1253

    17. [17]

      [17] Zhang X, Zhang L Z, Xie T F, et al. J. Phys. Chem. C, 2009,113(17):7371-7378

    18. [18]

      [18] Chen L, Yin S F, Luo S L, et al. Ind. Eng. Chem. Res., 2012,51(19):6760-6768

    19. [19]

      [19] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264(1): 581-588

    20. [20]

      [20] Zhang Z J, Wang W Z, Wang L, et al. Appl. Mater. Interfaces, 2012,4(2):593-597

    21. [21]

      [21] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76(9):1185-1191

    22. [22]

      [22] Cao J, Xu B Y, Luo B D, et al. Catal. Commun., 2011,13(1): 63-68

    23. [23]

      [23] Galceran M, Pujol M C, Zaldo C, et al. J. Phys. Chem. C, 2009,113(35):15497-15506

    24. [24]

      [24] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008, 112(3):747-753

    25. [25]

      [25] Song X C, Zheng Y F, Ma R, et al. J. Hazard. Mater., 2011,192(1):186-191

    26. [26]

      [26] Cao J, Xu B Y, Lin H L, et al. Chem. Eng. J., 2012,185/186 (6):91-97

    27. [27]

      [27] Zhang L, Wang W Z, Zhou L, et al. Appl. Catal. B: Environ., 2009,90(3/4):458-462

    28. [28]

      [28] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959

    29. [29]

      [29] Chen S F, Liu Y Z. Chemosphere, 2007,67(5):1010-1017

    30. [30]

      [30] Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S. Polym. Degrad. Stabil., 2010,95(9):1894-1902

    31. [31]

      [31] Zhang H. Lü X J, Li Y M, et al. ACS Nano, 2008,2(7):1487- 1491

    32. [32]

      [32] Morales W, Cason M, Aina O, et al. J. Am. Ceram. Soc., 2008,130(20):6318-6319

    33. [33]

      [33] Hao R, Xiao X, Zuo X X, et al. J. Hazard. Mater., 2012, 209/210(5):137-145

    34. [34]

      [34] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44(4):1392-1398

    35. [35]

      [35] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43(21):8361-8366

    36. [36]

      [36] Zhang N, Liu S Q, Fu X Z, et al. J. Phys. Chem. C, 2011, 115(18):9136-9145

    37. [37]

      [37] Helali N, Bessekhouad Y, Bouguelia A, et al. J. Hazard. Mater., 2009,168(1):484-492

    38. [38]

      [38] Li X N, Huang R K, Hu Y H, et al. Inorg. Chem., 2012,51 (11):6245-6250

    39. [39]

      [39] Guan M L, Ma D K, Hu S W, et al. Inorg. Chem., 2011,50(3): 800-805

    40. [40]

      [40] Tang J W, Zou Z G, Ye J H. J. Phys. Chem. B, 2003,107 (51):14265-14269

    41. [41]

      [41] Yu J G, Yu H G, Cheng B, et al. J. Phys. Chem. B, 2003, 107(50):13871-13879

    42. [42]

      [42] Jing L Q, Qu Y C, Wang B Q, et al. Sol. Energy Mat. Sol. Cells., 2006,90(12):1773-1787

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    13. [13]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(773)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return