Citation: TIAN Ai-Xiang, HOU Xue, SUN Na, XIAO Ru, YING Jun, YANG Yang, NING Ya-Li, LI Tian-Jiao, WANG Xiu-Li. Syntheses, Structures and Properties of Two POM-based Compounds Modified by Biimidazole and Its Derivative[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 839-847. doi: 10.11862/CJIC.114 shu

Syntheses, Structures and Properties of Two POM-based Compounds Modified by Biimidazole and Its Derivative

  • Corresponding author: TIAN Ai-Xiang,  WANG Xiu-Li, 
  • Received Date: 10 November 2014
    Available Online: 22 January 2015

    Fund Project: 国家自然科学基金(No.21101015,21471021,21201021)资助项目。 (No.21101015,21471021,21201021)

  • Through using two kinds of ligands (biimidazole and its derivative), two polyoxometalate-based compounds, [Ag4(biz)4][H2P2Mo5O23]·2H2O (1) and [Ag4(bbiz)4][HPW10W2O40] (2) (biz=2,2-biimidazole, bbiz=5-butyl-2,2-biimidazole), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, elemental analyses and IR spectra. Compound 1 contains bi-nuclear [Ag2(biz)2]2+ clusters, which are linked by [P2Mo5O23]6- anions through terminal O atoms to construct a 1D chain. In compound 2, each Keggin anion offers four bridging O atoms to link four bi-nuclear [Ag2(bbiz)2]2+ clusters and a 2D layer of 2 is constructed. Additionally, the electrochemical, photocatalytic and fluorescent properties of the title compounds have been studied. CCDC: 1027614, 1; 1027615, 2.
  • 加载中
    1. [1]

      [1] (a) Manna K, Zhang T, Carboni M, et al. J. Am. Chem. Soc., 2014,136(38):13182-13185;

    2. [2]

      (b) Ahmed A, Forster M, Clowes R, et al. Chem. Commun., 2014,50:14314-14316;

    3. [3]

      (c) Phang W J, Lee W R, Yoo K, et al. Angew. Chem. Int. Ed., 2014,53(32):8383-8387

    4. [4]

      [2] (a) Kikukawa Y J, Kuroda Y, Yamaguchi K, et al. Angew. Chem. Int. Ed., 2012,124(10):2484-2487;

    5. [5]

      (b) Miao H, Xu X, Ju W W, et al. Inorg. Chem., 2014,53(6): 2757-2759;

    6. [6]

      (c) Zhang Z Y, Lin Q P, Kurunthu D, et al. J. Am. Chem. Soc., 2011,133(18):6934-6937;

    7. [7]

      (d) Fu H, Qin C, Lu Y, et al. Angew. Chem. Int. Ed., 2012,51:7985-7989

    8. [8]

      (e) Wang X L, Bi Y F, Chen B K, et al. Inorg. Chem., 2008, 47(7):2442-2448

    9. [9]

      [3] (a) Balula S S, Cunha-Silva L, Santos I C M S, et al. New J. Chem., 2013,37:2341-2350;

    10. [10]

      (b) Tian A X, Ying J, Peng J, et al. Inorg. Chem., 2009,48(1): 100-110;

    11. [11]

      (c) Wang X L, Li N, Tian A X, et al. Inorg. Chem., 2014,53(14):7118-7129

    12. [12]

      [4] (a) Nagazi, I, Haddad A. J. Cluster Sci., 2014,25:627-638

    13. [13]

      (b) Jin H J, Zhou B B, Yu Y, et al. Chem. Eng. Commun., 2011,13,585-590

    14. [14]

      (c) Shi J, Wang C X, Yu K, et al. J. Coord. Chem., 2014,67(13):2229-2237

    15. [15]

      [5] Li Z L, Wang Y, Zhang L C, et al. Dalton Trans., 2014,43: 5840-5846

    16. [16]

      [6] (a) Wang L M, Wang Y, Fan Y, et al. Chem. Eng. Commun., 2014,16:430-440

    17. [17]

      (b) Yang H X, Guo S P, Tao J, et al. Cryst. Growth Des., 2009,9:4735-4744

    18. [18]

      (c) Sun J W, Li M T, Sha J Q, et al. Chem. Eng. Commun., 2013,15:10584-10589

    19. [19]

      [7] (a) Wang Y, Zhang L C, Zhu Z M, et al. Transition Met. Chem., 2011,36:261-267

    20. [20]

      (b) Xu Y L, Zhou B B, Su Z H, et al. J. Coord. Chem., 2011,64:3670-3678

    21. [21]

      [8] Tian A X, Yang Y, Ying J, et al. Dalton Trans., 2014,43: 8405-8413

    22. [22]

      [9] (a) Wang L, Yang W T, Zhu W, et al. Inorg. Chem., 2014, 53(21):11584-11588

    23. [23]

      (b) Zhou K, Qin C, Wang X L, et al. Chem. Eng. Commun., 2014,16:10376-10379

    24. [24]

      (c) Li M T, Sha J Q, Zong X M, et al. Cryst. Growth Des., 2014,14(6):2794-2802

    25. [25]

      [10] (a) Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany, 1997.

    26. [26]

      (b) Sheldrick G M. Acta Crystallogr. Sect. A, 2008,64:112

    27. [27]

      [11] Brown I D, Altermatt D. Acta Crystallogr., Sect. B, 1985,41: 244-247

    28. [28]

      [12] Jr Evans H T, Popev M T. Inorg. Chem., 1984,23:501-504

    29. [29]

      [13] Liu C M, Zhang D Q, Zhu D B. Cryst. Growth Des., 2006,6: 524-529

    30. [30]

      [14] (a) Wang X L, Li N, Tian A X, et al. Dalton Trans., 2013, 42:14856-14865

    31. [31]

      (b) Zhai Q G, Wu X Y, Chen S M, et al. Inorg. Chem., 2007,46:5046-5058

    32. [32]

      (c) Zhang P P, Peng J, Pang H J, et al. Chem. Eng. Commun., 2011,13:3832-3841

    33. [33]

      [15] (a) Dobrick M S, Jansen M. Eur. J. Inorg. Chem., 2006,22: 4498-4502

    34. [34]

      (b) Liu H Y, Wu H, Yang J, et al. Cryst. Growth Des., 2011,11(5):1786-1797

    35. [35]

      [16] Guo H X, Li X Z, Weng W. Inorg. Chem. Commun., 2010,13:909-913

    36. [36]

      [17] (a) Li T H, Li Q G, Yan J, et al. Dalton Trans., 2014,43: 9061-9069

    37. [37]

      (b) Tian A X, Yang Y, Sun N, et al. J. Coord. Chem., 2014, 67(9):1550-1561

    38. [38]

      [18] Wang X, Peng J, Liu M G, et al. Chem. Eng. Commun., 2012,14:3220-3226

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(0)
  • Abstract views(361)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return