Citation: Qian Yu, Hong Chen. Smart Antibacterial Surfaces with Switchable Function to Kill and Release Bacteria[J]. Acta Polymerica Sinica, ;2020, 51(4): 319-325. doi: 10.11777/j.issn1000-3304.2020.20031 shu

Smart Antibacterial Surfaces with Switchable Function to Kill and Release Bacteria

  • Corresponding author: Qian Yu, yuqian@suda.edu.cn
  • Received Date: 12 February 2020
    Revised Date: 16 February 2020
    Available Online: 19 March 2020

Figures(8)

  • The adhesion of bacteria and the subsequent formation of biofilms on the surfaces of biomaterials cause a series of adverse consequences, resulting in serious problems in both human healthcare and industrial applications. Therefore, endowing the surfaces with antibacterial capabilities has attracted considerable interests and development of antibacterial surfaces has become an active field of research. The traditional antibacterial strategies are mainly focused on killing bacteria attached on the surfaces, however, neglecting many problems raised from the accumulation of dead bacteria and debris such as degradation of biocidal efficiency and secondary contamination. Aiming to solve these problems, a promising smart antibacterial strategy based on switchable function between bacteria-killing and bacteria-releasing was proposed. Based on this strategy, a series of smart antibacterial surfaces have been developed to kill the attached bacteria and then trigger the on-demand release of dead bacteria from the surface by regulation of bacteria-surface interactions, so as to maintain the effective antibacterial activity for long-term applications. In this feature article, we summarize our achievements and the recent progress in the field of smart antibacterial surfaces. These surfaces have been divided into three categories based on the methods for applying biocidal agents on to the surfaces: (1) the surfaces with permanently immobilized biocidal agents; (2) the surfaces with reversibly incorporated biocidal agents; and (3) the surfaces without common biocidal agents but with physically biocidal activity. In the end, we provide a brief perspective of the future research directions in this promising area.
  • 加载中
    1. [1]

      Gupta A, Mumtaz S, Li C H, Hussain I, Rotello V M. Chem Soc Rev, 2019, 48: 415 − 427  doi: 10.1039/C7CS00748E

    2. [2]

      Qian Yuxin(钱宇芯), Zhang Danfeng(张丹丰), Wu Yueming(武月铭), Chen Qi(陈琦), Liu Runhui(刘润辉). Acta Polymerica Sinica(高分子学报), 2016, (10): 1300 − 1311

    3. [3]

      Ding X, Duan S, Ding X, Liu R, Xu F. Adv Funct Mater, 2018, 28: 1802140  doi: 10.1002/adfm.201802140

    4. [4]

      Wang Rong(王蓉), Shen Xinkun(沈新坤), Hu Yan(胡燕), Cai Kaiyong(蔡开勇). Acta Polymerica Sinica(高分子学报), 2019, 50(9): 863 − 872

    5. [5]

      Yu Q, Wu Z, Chen H. Acta Biomater, 2015, 16: 1 − 13  doi: 10.1016/j.actbio.2015.01.018

    6. [6]

      Wei T, Tang Z, Yu Q, Chen H. ACS Appl Mater Interfaces, 2017, 9: 37511 − 37523  doi: 10.1021/acsami.7b13565

    7. [7]

      Wei T, Yu Q, Chen H. Adv Healthc Mater, 2019, 8: 1801381  doi: 10.1002/adhm.201801381

    8. [8]

      Yu Q, Shivapooja P, Johnson L M, Tizazu G, Leggett G J, Lopez G P. Nanoscale, 2013, 5: 3632 − 3637  doi: 10.1039/c3nr00312d

    9. [9]

      Yu Q, Johnson L M, Lopez G P. Adv Funct Mater, 2014, 24: 3751 − 3759  doi: 10.1002/adfm.201304274

    10. [10]

      Yu Q, Cho J, Shivapooja P, Ista L K, Lopez G P. ACS Appl Mater Interfaces, 2013, 5: 9295 − 9304  doi: 10.1021/am4022279

    11. [11]

      Yu Q, Ista L K, Lopez G P. Nanoscale, 2014, 6: 4750 − 4757  doi: 10.1039/C3NR06497B

    12. [12]

      Ista L K, Yu Q, Parthasarathy A, Schanze K S, Lopez G P. Biointerphases, 2016, 11: 019003  doi: 10.1116/1.4939239

    13. [13]

      Yu Q, Ge W, Atewologun A, Stiff-Roberts A D, Lopez G P. J Mater Chem B, 2014, 2: 4371 − 4378  doi: 10.1039/C4TB00566J

    14. [14]

      Yu Q, Ge W, Atewologun A, Stiff-Roberts A D, Lopez G P. Colloids Surf, B, 2015, 126: 328 − 334  doi: 10.1016/j.colsurfb.2014.12.043

    15. [15]

      He M, Wang Q, Zhang J, Zhao W, Zhao C. ACS Appl Mater Interfaces, 2017, 9: 44782 − 44791  doi: 10.1021/acsami.7b13238

    16. [16]

      Shi Z Q, Cai Y, Deng J, Zhao W, Zhao C. ACS Appl Mater Interfaces, 2016, 8: 23523 − 23532  doi: 10.1021/acsami.6b07397

    17. [17]

      Wang B, Xu Q, Ye Z, Liu H, Lin Q, Nan K, Li Y, Wang Y, Qi L, Chen H. ACS Appl Mater Interfaces, 2016, 8: 27207 − 27217  doi: 10.1021/acsami.6b08893

    18. [18]

      Wang X, Yan S, Song L, Shi H, Yang H, Luan S, Huang Y, Yin J, Khan A F, Zhao J. ACS Appl Mater Interfaces, 2017, 9: 40930 − 40939  doi: 10.1021/acsami.7b09968

    19. [19]

      Yang H, Li G, Stansbury J W, Zhu X, Wang X, Nie J. ACS Appl Mater Interfaces, 2016, 8: 28047 − 28054  doi: 10.1021/acsami.6b09343

    20. [20]

      Yu Q, Ista L K, Gu R, Zauscher S, Lopez G P. Nanoscale, 2016, 8: 680 − 700  doi: 10.1039/C5NR07107K

    21. [21]

      Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J. Curr Opin Chem Eng, 2018, 19: 86 − 93  doi: 10.1016/j.coche.2017.12.008

    22. [22]

      Wu B, Zhang L, Huang L, Xiao S, Yang Y, Zhong M, Yang J. Langmuir, 2017, 33: 7160 − 7168  doi: 10.1021/acs.langmuir.7b01333

    23. [23]

      Wu J, Zhang D, Wang Y, Mao S, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. Langmuir, 2019, 35: 8285 − 8293

    24. [24]

      Huang L, Zhang L, Xiao S, Yang Y, Chen F, Fan P, Zhao Z, Zhong M, Yang J. Chem Eng J, 2018, 333: 1 − 10  doi: 10.1016/j.cej.2017.09.142

    25. [25]

      Fu Y, Wang Y, Huang L, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. Ind Eng Chem Res, 2018, 57: 8938 − 8945  doi: 10.1021/acs.iecr.8b01730

    26. [26]

      Yu Q, Chen H, Zhang Y, Yuan L, Zhao T, Li X, Wang H. Langmuir, 2010, 26: 17812 − 17815  doi: 10.1021/la103647s

    27. [27]

      Wei T, Yu Q, Zhan W, Chen H. Adv Healthc Mater, 2016, 5: 449 − 456  doi: 10.1002/adhm.201500700

    28. [28]

      Zhan W, Wei T, Yu Q, Chen H. ACS Appl Mater Interfaces, 2018, 10: 36585 − 36601  doi: 10.1021/acsami.8b12130

    29. [29]

      Ma Y, Tian X, Liu L, Pan J, Pan G. Acc Chem Res, 2019, 52: 1611 − 1622  doi: 10.1021/acs.accounts.8b00604

    30. [30]

      Zhan W, Shi X, Yu Q, Lyu Z, Cao L, Du H, Liu Q, Wang X, Chen G, Li D, Brash J L, Chen H. Adv Funct Mater, 2015, 25: 5206 − 5213  doi: 10.1002/adfm.201501642

    31. [31]

      Cao L, Qu Y, Hu C, Wei T, Zhan W, Yu Q, Chen H. Adv Mater Interfaces, 2016, 3: 1600600  doi: 10.1002/admi.201600600

    32. [32]

      Hu C, Qu Y, Zhan W, Wei T, Cao L, Yu Q, Chen H. Colloid Surface B, 2017, 152: 192 − 198  doi: 10.1016/j.colsurfb.2017.01.025

    33. [33]

      Lyu Z, Shi X, Lei J, Yuan Y, Yuan L, Yu Q, Chen H. J Mater Chem B, 2017, 5: 1896 − 1900  doi: 10.1039/C6TB02572B

    34. [34]

      Qu Y, Wei T, Zhan W, Hu C, Cao L, Yu Q, Chen H. J Mater Chem B, 2017, 5: 444 − 453  doi: 10.1039/C6TB02821G

    35. [35]

      Hu C, Wu J, Wei T, Zhan W, Qu Y, Pan Y, Yu Q, Chen H. J Mater Chem B, 2018, 6: 2198 − 2203  doi: 10.1039/C8TB00490K

    36. [36]

      Wei T, Zhan W, Yu Q, Chen H. ACS Appl Mater Interfaces, 2017, 9: 25767 − 25774  doi: 10.1021/acsami.7b06483

    37. [37]

      Wei T, Zhan W, Cao L, Hu C, Qu Y, Yu Q, Chen H. ACS Appl Mater Interfaces, 2016, 8: 30048 − 30057  doi: 10.1021/acsami.6b11187

    38. [38]

      Zhan W, Qu Y, Wei T, Hu C, Pan Y, Yu Q, Chen H. ACS Appl Mater Interfaces, 2018, 10: 10647 − 10655  doi: 10.1021/acsami.7b18166

    39. [39]

      Zhou Y, Zheng Y, Wei T, Qu Y, Wang Y, Zhan W, Zhang Y, Pan G, Li D, Yu Q, Chen H. ACS Appl Mater Interfaces, 2020, 12: 5447 − 5455  doi: 10.1021/acsami.9b18505

    40. [40]

      Xu L, Neoh K G, Kang E T. Prog Polym Sci, 2018, 87: 165 − 196  doi: 10.1016/j.progpolymsci.2018.08.005

    41. [41]

      Wang Y, Wei T, Qu Y, Zhou Y, Zheng Y, Huang C, Zhang Y, Yu Q, Chen H. ACS Appl Mater Interfaces, DOI: 10.1021/acsami.9b17581

    42. [42]

      Qu Y, Wei T, Zhao J, Jiang S, Yang P, Yu Q, Chen H. J Mater Chem B, 2018, 6: 3946 − 3955  doi: 10.1039/C8TB01122B

  • 加载中
    1. [1]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    2. [2]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    3. [3]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    4. [4]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    5. [5]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    10. [10]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    20. [20]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

Metrics
  • PDF Downloads(265)
  • Abstract views(8749)
  • HTML views(1851)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return