Citation: Ting Huang, Yan Chen, Peng-fei Sun, Qu-li Fan, Wei Huang. Conjugated-polymer Nanoparticle for NIR-II Fluorescence Imaging Guiding NIR-II Photothermal Therapy[J]. Acta Polymerica Sinica, ;2020, 51(4): 346-354. doi: 10.11777/j.issn1000-3304.2019.19192 shu

Conjugated-polymer Nanoparticle for NIR-II Fluorescence Imaging Guiding NIR-II Photothermal Therapy

Figures(7)

  • To improve the quality of fluorescence imaging and effectiveness of photothermal therapy, We designed a novel conjugated-polymer (BDT-TTQ) with a narrow band gap for NIR-II fluorescence and NIR-II photothermal effect. To realize solubility of BDT-TTQ in water, we enveloped the hydrophobic polymer BDT-TTQ into amphiphilic copolymer (PEG-b-PPG-b-PEG, F-127) shells for NIR-II water-soluble nanoparticles (BDT-TTQ NPs) through the nanoprecipitation method. With strong absorption in the NIR-II region of 1000 − 1200 nm, the BDT-TTQ NPs can realize fluorescence image during 1200 − 1400 nm excited by 1064 nm laser. The prepared BDT-TTQ NPs were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The average hydrodynamic radius of BDT-TTQ NPs was around 62 nm and spherical morphology was observed from TEM. Besides, the BDT-TTQ NPs showed the similar hydrodynamic radius in physiological environment such as phosphate buffer saline (PBS), Dulbecco's Modified Eagle Medium (DMEM) and fetal bovine serum (FBS) and exhibited the excellent biological stability, indicating the potential for further in vivo application. To study the NIR-II fluorescence characters, we firstly detected the maximum imaging depth of BDT-TTQ NPs in vitro and the penetration depth can achieve 6 mm at 1064 nm laser. High-resolution NIR-II fluorescence imaging of living blood vessels in mice was also achieved by BDT-TTO NPs under 1064 nm laser irradiation. In addition, the real-time NIR-II images of brain and abdomen were obtained with an ultrahigh signal-to-background ratio. Photothermal experiments suggested the BDT-TTQ NPs exhibited excellent photothermal conversion and outstanding photothermla stability under 1064 nm excitation, which revealed the potential of BDT-TTQ NPs for photothermal therapy in vivo. MTT assay and confocal laser scanning microscopy (CLSM) were used to analyse photothermal treatment toward human cervical carcinoma (HeLa) cells in vitro and the results indicated the nanoparticles performed an effective photothermal inhibition at the cellular level under laser irradiation. Morever, BDT-TTQ NPs developed in this study can realize NIR-II fluorescence imaging-guided photothermal therapy in vivo at 1064 nm laser.
  • 加载中
    1. [1]

      Zhang Jianxu(张剑旭), Sun Tingting(孙婷婷), Xie Zhigang(谢志刚). Acta Polymerica Sinica(高分子学报), 2019, 50(6): 633 − 641

    2. [2]

      Yan Gang(严刚), Nie Guangting(聂光庭), Kong Xiangquan(孔祥权), Kuang Miao(邝淼), Rong Jianghua(容建华). Acta Polymerica Sinica(高分子学报), 2016, (2): 256 − 263

    3. [3]

      Ge X G, Fu Q R, Bai L, Chen B, Wang R J, Gao S, Song J B. New J Chem, 2019, 43: 8835 − 8851  doi: 10.1039/C9NJ01402K

    4. [4]

      Zhou J J, Jiang Y Y, Hou S A, Upputuri P K, Wu D, Li J C, Wang P. ACS Nano, 2018, 12: 2643 − 2651  doi: 10.1021/acsnano.7b08725

    5. [5]

      Deng X R, Liang S, Cai X C, Huang S S, Cheng Z Y, Shi Y S, Pang M L, Ma P A, Lin J. Nano Lett, 2019, 19: 6772 − 6780  doi: 10.1021/acs.nanolett.9b01716

    6. [6]

      Lin H, Gao S S, Dai C, Chen Y, Shi J L. J Am Chem Soc, 2017, 139: 16235 − 16247  doi: 10.1021/jacs.7b07818

    7. [7]

      Yu X J, Yang K, Chen X Y, Li W W. Biomaterials, 2017, 143: 120 − 129  doi: 10.1016/j.biomaterials.2017.07.037

    8. [8]

      Zhou L B, Jing Y, Liu Y B, Liu Z H, Gao D Y, Chen H B, Song W Y, Wang T, Fang X F, Qin W P, Yuan Z, Dai S, Qiao Z A, Wu C F. Theranostics, 2018, 8: 663 − 675  doi: 10.7150/thno.21927

    9. [9]

      Chen Q S, Chen J Q, He M, Bai Y Y, Yan H X, Zeng N, Liu F Y, Wen S, Song L, Sheng Z H, Liu C B, Fang C H. Biomater Sci, 2019, 7: 3165 − 3177  doi: 10.1039/C9BM00528E

    10. [10]

      Sun T T, Han J F, Liu S, Wang X, Wang Z Y, Xie Z G. ACS Nano, 2019, 13: 7345 − 7354  doi: 10.1021/acsnano.9b03910

    11. [11]

      Zhang W S, Huang T, Li J W, Sun P F, Wang Y F, Shi W, Han W, Wang W J, Fan Q L, Huang W. ACS Appl Mater Interfaces, 2019, 11: 16311 − 16319  doi: 10.1021/acsami.9b02597

    12. [12]

      Lu X M, Yuan P C, Zhang W S, Wu Q, Wang X X, Zhao M, Sun P F, Huang W, Fan Q L. Polym Chem, 2018, 9: 3118 − 3126  doi: 10.1039/C8PY00215K

    13. [13]

      Li Xiaozhen(李晓珍), Tian Sichao(田思超), Sun Pengfei(孙鹏飞), Fan Quli(范曲立), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报), 2017, (6): 952 − 958  doi: 10.11777/j.issn1000-3304.2017.16311

    14. [14]

      Sun Pengfei(孙鹏飞), Deng Weixing(邓卫星), Fan Quli(范曲立), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报), 2016, (3): 375 − 381  doi: 10.11777/j.issn1000-3304.2016.15255

    15. [15]

      Li C Y, Zhang Y J, Chen G C, Hu F, Zhao K, Wang Q B. Adv Mater, 2017, 29: 1605754  doi: 10.1002/adma.201605754

    16. [16]

      Lu Xiaomei(卢晓梅), Zhao Meng(赵萌), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报), 2018, (11): 1451 − 1458  doi: 10.11777/j.issn1000-3304.2018.18068

    17. [17]

      Yang Q L, Ma Z R, Wang H S, Zhou B, Zhu S J, Zhong Y T, Wang J Y, Wan H, Antaris A, Ma R, Zhang X, Yang J Y, Zhang X D, Sun H T, Liu W Q, Liang Y Y, Dai H J. Adv Mater, 2017, 29: 1605497  doi: 10.1002/adma.201605497

    18. [18]

      Zhang X D, Wang H S, Antaris A L, Li L L, Diao S, Ma R, Nguyen A, Hong G S, Ma Z R, Wang J, Zhu S J, Castellano J M, Wyss-Coray T, Liang Y Y, Luo J, Dai H J. Adv Mater, 2016, 28: 6872 − 6879  doi: 10.1002/adma.201600706

    19. [19]

      Li C Y, Zhang Y J, Wang M, Zhang Y, Chen G C, Li L, Wu D M, Wang Q B. Biomaterials, 2014, 35: 393 − 400  doi: 10.1016/j.biomaterials.2013.10.010

    20. [20]

      Hao X X, Li C Y, Zhang Y J, Wang H Z, Chen G C, Wang M, Wang Q B. Adv Mater, 2018, 30: 1804437  doi: 10.1002/adma.201804437

    21. [21]

      Dong B H, Li C Y, Chen G C, Zhang Y J, Zhang Y, Deng M J, Wang Q B. Chem Mater, 2013, 25: 2503 − 2509  doi: 10.1021/cm400812v

    22. [22]

      Guo B, Sheng Z H, Hu D H, Liu C B, Zheng H R, Liu B. Adv Mater, 2018, 30: 1802591  doi: 10.1002/adma.201802591

    23. [23]

      Sun T T, Dou J H, Liu S, Wang X, Zheng X H, Wang Y P, Jian Pei, Xie Z G. ACS Appl Mater Interfaces, 2018, 10: 7919 − 7926  doi: 10.1021/acsami.8b01458

    24. [24]

      Zhang W S, Sun X L, Huang T, Pan X X, Sun P F, Li J W, Zha H, Lu X M, Fan Q L, Huang W. Chem Commun, 2019, 55: 9487  doi: 10.1039/C9CC04196F

    25. [25]

      Qi J, Sun C W, Li D Y, Zhang H Q, Yu W B, Zebibula A, Lam J W Y, Xi W, Zhu L, Cai F H, Wei P F, Zhu C L, Kwok R T K, Streich L L, Prevedel R, Qian J, Tang B Z. ACS Nano, 2018, 12: 7936 − 7945  doi: 10.1021/acsnano.8b02452

    26. [26]

      Li B H, Lu L F, Zhao M Y, Lei Z H, Zhang F. Angew Chem Int Ed, 2018, 57: 7483 − 7487  doi: 10.1002/anie.201801226

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    7. [7]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    17. [17]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    18. [18]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(144)
  • Abstract views(7563)
  • HTML views(1340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return