Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes

Lin Peng Xincheng Liang Zelong Sun Xingfa Chen Dexin Meng Renshu Huang Qian Liu Huan Wen Shibin Yin

引用本文: Lin Peng, Xincheng Liang, Zelong Sun, Xingfa Chen, Dexin Meng, Renshu Huang, Qian Liu, Huan Wen, Shibin Yin. Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes[J]. Chinese Journal of Structural Chemistry, 2025, 44(4): 100542. doi: 10.1016/j.cjsc.2025.100542 shu
Citation:  Lin Peng,  Xincheng Liang,  Zelong Sun,  Xingfa Chen,  Dexin Meng,  Renshu Huang,  Qian Liu,  Huan Wen,  Shibin Yin. Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes[J]. Chinese Journal of Structural Chemistry, 2025, 44(4): 100542. doi: 10.1016/j.cjsc.2025.100542 shu

Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes

摘要: H2O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface (AEI) limit the electrochemical performances of aqueous zinc ion batteries. Herein, methionine (Met) is introduced as an electrolyte additive to solve the above issues by three aspects: Firstly, Met is anchored on Zn anode by amino/methylthio groups to form an H2O-poor AEI, thus increasing the overpotential of hydrogen evolution reaction (HER); secondly, Met serves as a pH buffer to neutralize the HER generated OH-, thereby preventing the formation of by-products (e.g. Zn4SO4(OH)6·xH2O); thirdly, Zn2+ could be captured by carboxyl group of the anchored Met through electrostatic interaction, which promotes the dense and flat Zn deposition. Consequently, the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm-2, 1.0 mAh cm-2, and 1400 h at 5.0 mA cm-2, 5.0 mAh cm-2. Moreover, Zn||VO2 full cell exhibits a capacity retention of 91.0% after operating for 7000 cycles at 5.0 A g-1. This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption, pH buffer, and Zn2+ capture strategies to design advanced industrial-oriented batteries.

English


  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  46
  • HTML全文浏览量:  1
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章