Band structure engineering of phosphorus doped Ta3N5 for efficient photoelectrochemical water oxidation
-
* Corresponding authors.
E-mail addresses: yingpubi@licp.cas.cn (Y. Bi), dingyong1@lzu.edu.cn (Y. Ding)
Citation:
Congzhao Dong, Yajun Zhang, Yingpu Bi, Zeyu Li, Yong Ding. Band structure engineering of phosphorus doped Ta3N5 for efficient photoelectrochemical water oxidation[J]. Chinese Chemical Letters,
;2025, 36(12): 111449.
doi:
10.1016/j.cclet.2025.111449
M. Grätzel, Nature 414 (2001) 338–344.
doi: 10.1038/35104607
P. Zhou, I.A. Navid, Y. Ma et al., Nature 613 (2023) 66–70.
doi: 10.1038/s41586-022-05399-1
M.G. Walter, E.L. Warren, J.R. McKone et al., Chem. Rev. 110 (2010) 6446–6473.
doi: 10.1021/cr1002326
S. Wang, G. Liu, L. Wang, Chem. Rev. 119 (2019) 5192–5247.
doi: 10.1021/acs.chemrev.8b00584
X. Cao, C. Xu, X. Liang et al., Appl. Catal. B: Environ. 260 (2020) 118136.
doi: 10.1016/j.apcatb.2019.118136
J.R. Bolton, S.J. Strickler, J.S. Connolly, Nature 316 (1985) 495–500.
doi: 10.1038/316495a0
T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520–7535.
doi: 10.1039/C3CS60378D
J. Feng, H. Huang, W. Guo et al., Chem. Eng. J. 417 (2021) 128095.
doi: 10.1016/j.cej.2020.128095
G. Liu, S. Ye, P. Yan et al., Energy Environ. Sci. 9 (2016) 1327–1334.
doi: 10.1039/C5EE03802B
C. Dong, X. Zhang, Y. Ding, Y. Zhang, Y. Bi, Appl. Catal. B: Environ. 338 (2023) 123055.
doi: 10.1016/j.apcatb.2023.123055
H. Huang, J. Wang, Y. Liu et al., Nat. Mater. 23 (2023) 383–390.
B. Zhao, X. Huang, Y. Ding, Y. Bi, Angew. Chem. Int. Ed. 62 (2022) e202213067.
A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, K. Domen, J. Phys. Chem. B 108 (2004) 11049–11053.
W.J. Chun, A. Ishikawa, H. Fujisawa et al., J. Phys. Chem. B 107 (2003) 1798–1803.
doi: 10.1021/jp027593f
J. Feng, H. Huang, S. Yan et al., Nano Today 30 (2020) 100830.
doi: 10.1016/j.nantod.2019.100830
B. Zhang, Z. Fan, Y. Chen et al., Angew. Chem. Int. Ed. 62 (2023) e202305123.
doi: 10.1002/anie.202305123
M. Zhong, T. Hisatomi, Y. Sasaki, et al., Angew. Chem. Int. Ed. 56 (2017) 4739–4743.
doi: 10.1002/anie.201700117
Y. He, J.E. Thorne, C.H. Wu et al., Chem 1 (2016) 640–655.
doi: 10.1016/j.chempr.2016.09.006
S.C. Erwin, L. Zu, M.I. Haftel et al., Nature 436 (2005) 91–94.
doi: 10.1038/nature03832
Y. Li, L. Zhang, A. Torres-Pardo et al., Nat. Commun. 4 (2013) 2566.
doi: 10.1038/ncomms3566
Q. Rui, L. Wang, Y. Zhang et al., J. Mater. Chem. A 6 (2018) 7021–7026.
doi: 10.1039/c8ta00556g
Y. Kado, C.Y. Lee, K. Lee et al., Chem. Commun. 48 (2012) 8685–8687.
doi: 10.1039/c2cc33822j
S. Grigorescu, B. Bärhausen, L. Wang et al., Electrochem. Commun. 51 (2015) 85–88.
doi: 10.1016/j.elecom.2014.12.019
L. Pei, Z. Xu, Z. Shi et al., J. Mater. Chem. A 5 (2017) 20439–20447.
doi: 10.1039/C7TA06227C
L.I. Wagner, E. Sirotti, O. Brune et al., Adv. Funct. Mater. 34 (2023) 2306539.
Z. Lou, Y. Yang, Y. Wang et al., Chem. Eng. J. 396 (2020) 125161.
doi: 10.1016/j.cej.2020.125161
J. Seo, T. Takata, M. Nakabayashi et al., J. Am. Chem. Soc. 137 (2015) 12780–12783.
doi: 10.1021/jacs.5b08329
Y. Xiao, C. Feng, J. Fu et al., Y. Li, Nat. Catal. 3 (2020) 932–940.
doi: 10.1038/s41929-020-00522-9
J. Wang, Y. Jiang, A. Ma et al., Appl. Catal. B: Environ. 244 (2019) 502–510.
doi: 10.1016/j.apcatb.2018.11.076
X. Zhang, H. Guo, G. Dong et al., Appl. Catal. B: Environ. 277 (2020) 119217.
doi: 10.1016/j.apcatb.2020.119217
C. Xia, Y. Li, H. Kim et al., Mater. 408 (2021) 124900.
doi: 10.1016/j.jhazmat.2020.124900
W. Fu, X. Guan, Y. Si, M. Liu, Chem. Eng. J. 410 (2021) 128391.
doi: 10.1016/j.cej.2020.128391
E. Nurlaela, Y. Sasaki, M. Nakabayashi et al., J. Mater. Chem. A 6 (2018) 15265–15273.
doi: 10.1039/c8ta05300f
X. Feng, T.J. LaTempa, J.I. Basham et al., Nano Lett. 10 (2010) 948–952.
doi: 10.1021/nl903886e
H. Wu, L. Zhang, A. Du et al., Nat. Commun. 13 (2022) 6231.
doi: 10.3390/app12126231
J. Fu, F. Wang, Y. Xiao et al., ACS Catal. 10 (2020) 10316–10324.
doi: 10.1021/acscatal.0c02648
A. Kawashima, T. Sato, N. Ohtsu, K. Asami, Mater. Trans. 45 (2004) 131–136.
doi: 10.2320/matertrans.45.131
M. Rahmati, E.M. Zahrani, M. Atapour et al., Mater. Chem. Phys. 315 (2024) 128983.
doi: 10.1016/j.matchemphys.2024.128983
C. Feng, B. Zhao, Y. Bi, J. Mater. Chem. A 10 (2022) 12811–12816.
doi: 10.1039/d2ta02702j
J.H. Swisher, M.H. Read, Metall. Trans. 3 (1972) 493–498.
doi: 10.1007/BF02642054
E. Watanabe, H. Ushiyama, K. Yamashita, ACS Appl. Mater. Inter. 9 (2017) 9559–9566.
doi: 10.1021/acsami.6b12261
X. Zhang, J. Li, Y. Yang et al., Adv. Mater. 30 (2018) 1803551.
doi: 10.1002/adma.201803551
J. Wang, M. Zhang, G. Yang et al., Adv. Funct. Mater. 31 (2021) 2101532.
doi: 10.1002/adfm.202101532
X. Ding, J. Yu, W. Huang et al., Chem. Eng. J. 451 (2023) 138550.
doi: 10.1016/j.cej.2022.138550
X. Hu, S. Zhang, J. Sun et al., Nano Energy 56 (2019) 109–117.
doi: 10.1016/j.nanoen.2018.11.047
Z. Zhang, X. Huang, B. Zhang, Y. Bi, Energy Environ. Sci. 15 (2022) 2867–2873.
doi: 10.1039/d2ee00936f
B. Zhang, S. Yu, Y. Dai et al., Nat. Commun. 12 (2021) 6969.
doi: 10.1038/s41467-021-27299-0
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Yuhao Ma , Yufei Zhou , Hongli Li , Cheng Fang , Mingchuan Yu , Shaoxia Yang , Junfeng Niu . Photoelectrocatalytic degradation of refractory organic pollutants in water: Mechanism of active species generation by modulating the photoanode micro-interface. Chinese Chemical Letters, 2026, 37(1): 111249-. doi: 10.1016/j.cclet.2025.111249
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Jun Yu , Yangping Zhang , Nannan Zhang , Jie Li , Huiyu Sun , Xinyu Gu , Changqing Ye , Tianpeng Liu , Yukou Du . The interface engineering strategy assists the 3D core-shell structure Co3S4/CuS@NiFe LDH nanocoral spheres to achieve significant overall water splitting. Chinese Chemical Letters, 2026, 37(2): 110830-. doi: 10.1016/j.cclet.2025.110830
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
Yang Yang , Yan-Xin Chen , Ao-Sheng She , Hao-Yan Shi , Wen Chen , Wei Wang , Hai-Long Wang , Ke-Xian Li , Yi-Hu Pu , Wei-Hua Yang , Xiu-Mei Lin , Can-Zhong Lu . Nickel phosphide modified TiO2 nanotube arrays for efficient PEC water splitting H2 generation. Chinese Journal of Structural Chemistry, 2025, 44(7): 100623-100623. doi: 10.1016/j.cjsc.2025.100623
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Mengzhao Liu , Jie Yin , Chengjian Wang , Weiji Wang , Yuan Gao , Mengxia Yan , Ping Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271
Sumiya Akter Dristy , Md Ahasan Habib , Mehedi Hasan Joni , Md Najibullah , Rutuja Mandavkar , Shusen Lin , Jihoon Lee . Binder-free bimetallic vanadium-nickel-boride-phosphide spherical structure for highly efficient and stable industrial-level water splitting. Chinese Journal of Structural Chemistry, 2025, 44(12): 100747-100747. doi: 10.1016/j.cjsc.2025.100747
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Xinxin Zhang , Zhijian Liang , Xu Zhang , Qian Guo , Ying Xie , Lei Wang , Honggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935
Weilong Liu , Jipeng Dong , Luyao Zhang , Ning Li , Yangqin Gao , Lei Ge . Dynamic tuning of d-p orbital hybridization during sulfur vacancy evolution in Co9S8 toward efficient overall water splitting. Chinese Journal of Structural Chemistry, 2025, 44(9): 100661-100661. doi: 10.1016/j.cjsc.2025.100661
Zhihao HE , Jiafu DING , Yunjie WANG , Xin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984