Stabilizing Cu2+ in perovskite via A-site modulation for efficient CO2 electrocatalysis to CH4
-
* Corresponding authors.
E-mail addresses: zhongdazhong@tyut.edu.cn (D. Zhong), zhaoqiang@tyut.edu.cn (Q. Zhao).
Citation:
Yuhan Zheng, Yunzhen Jia, Xuelei Lang, Dazhong Zhong, Jinping Li, Qiang Zhao. Stabilizing Cu2+ in perovskite via A-site modulation for efficient CO2 electrocatalysis to CH4[J]. Chinese Chemical Letters,
;2025, 36(8): 111193.
doi:
10.1016/j.cclet.2025.111193
R. Zhao, P. Ding, P. Wei, et al., Adv. Funct. Mater. 31 (2021) 2009449.
A. Bagger, W. Ju, A.S. Varela, et al., ChemPhysChem 18 (2017) 3266–3273.
doi: 10.1002/cphc.201700736
X. Jiang, Y. Zhao, Y. Kong, et al., Chin. Chem. Lett. 36 (2025) 109555.
X. Wang, Y. Wang, L. Cui, et al., Chin. Chem. Lett. 35 (2024) 110031.
Y. Wang, J. Liu, G. Zheng, Adv. Mater. 33 (2021) e2005798.
W. Ma, X. He, W. Wang, et al., Chem. Soc. Rev. 50 (2021) 12897–12914.
doi: 10.1039/d1cs00535a
J. Zhu, L. Lv, S. Zaman, et al., Energy Environ. Sci. 16 (2023) 4812–4833.
doi: 10.1039/d3ee02196c
M. Huang, S. Gong, C. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 23002–23009.
doi: 10.1002/anie.202110594
L.L. Zhuo, P. Chen, K. Zheng, et al., Angew. Chem. Int. Ed. 61 (2022) e202204967.
J. Zhao, P. Zhang, T. Yuan, et al., J. Am. Chem. Soc. 145 (2023) 6622–6627.
doi: 10.1021/jacs.2c12006
L. Xue, C. Zhang, J. Wu, et al., Appl. Catal. B 304 (2022) 120951.
Y. Zhao, Q. Yuan, M. Fan, et al., Chin. Chem. Lett. 34 (2023) 108120.
Y. Zhang, X. Zhang, W. Sun, ACS Catal. 13 (2023) 1545–1553.
doi: 10.1021/acscatal.2c05538
X. Zhi, A. Vasileff, Y. Zheng, et al., Energy Environ. Sci. 14 (2021) 3912–3930.
doi: 10.1039/d1ee00740h
A. Vasileff, C. Xu, Y. Jiao, et al., Chem 4 (2018) 1809–1831.
L. Zhan, Y. Wang, M. Liu, et al., Chin. Chem. Lett. 36 (2025) 109695.
A. Bagger, W. Ju, A.S. Varela, et al., Catal. Today 288 (2017) 74–78.
H. Sun, J. Liu, Chin. Chem. Lett. 34 (2023) 108018.
Y. Zhang, Q. Zhou, X. Lu, et al., CCS Chem. 6 (2024) 2950–2960.
Y. Shangguan, F. Li, X. Feng, et al., Chem. Commun. 60 (2024) 13726–13729.
doi: 10.1039/d4cc05372a
S. Deng, R. Wang, X. Feng, et al., Angew. Chem. 135 (2023) e202309625.
X. Zhou, J. Shan, L. Chen, et al., J. Am. Chem. Soc. 144 (2022) 2079–2084.
doi: 10.1021/jacs.1c12212
X. Chen, S. Jia, C. Chen, et al., Adv. Mater. 36 (2023) 2310273.
Y. Li, Y. Zhang, L. Shi, et al., Small 20 (2024) 2402823.
Q. Lei, H. Zhu, K. Song, et al., J. Am. Chem. Soc. 142 (2020) 4213–4222.
doi: 10.1021/jacs.9b11790
X. Xu, W. Wang, W. Zhou, Z. Shao, Small Methods 2 (2018) 1800071.
S. Khamgaonkar, Q. Chen, K. Musselman, V. Maheshwari, J. Mater. Chem. A 11 (2023) 20079–20088.
doi: 10.1039/d3ta04226j
H. Zhang, Y. Xu, M. Lu, et al., Adv. Funct. Mater. 31 (2021) 2101872.
Y. Sun, R. Li, X. Chen, et al., Adv. Energy Mater. 11 (2021) 2003755.
G.M. Dalpian, Q. Liu, C.C. Stoumpos, et al., Phys. Rev. Mater. 1 (2017) 025401.
doi: 10.1103/PhysRevMaterials.1.025401
W. Hu, M. Zheng, H. Duan, et al., Chin. Chem. Lett. 33 (2022) 1412–1416.
Z. Gu, J. Le, H. Wei, et al., Chin. Chem. Lett. 35 (2024) 108849.
F. Wang, W. Sun, ACS Sustainable Chem. Eng. 12 (2024) 15651–15658.
doi: 10.1021/acssuschemeng.4c06093
F. Wang, J. Chen, W. Sun, Chin. J. Inorg. Chem. 41 (2025) 97–104.
J. Zhao, P. Zhang, T. Yuan, et al., J. Am. Chem. Soc. 145 (2023) 6622–6627.
doi: 10.1021/jacs.2c12006
S. Chen, Y. Su, P. Deng, et al., ACS Catal. 10 (2020) 4640–4646.
doi: 10.1021/acscatal.0c00847
Z. Xu, C. Peng, G. Luo, et al., Adv. Energy Mater. 13 (2023) 2204417.
D. Zhong, D. Cheng, Q. Fang, et al., Chem. Eng. J. 470 (2023) 143907.
D. Ren, N.T. Wong, A.D. Handoko, et al., J. Phys. Chem. Lett. 7 (2016) 20–24.
doi: 10.1021/acs.jpclett.5b02554
W. Tang, A.A. Peterson, A.S. Varela, et al., Phys. Chem. Chem. Phys. 14 (2012) 76–81.
Y. Deng, A.D. Handoko, Y. Du, et al., ACS Catal. 6 (2016) 2473–2481.
doi: 10.1021/acscatal.6b00205
N. Ekthammathat, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 277 (2013) 211–217.
M. Balık, V. Bulut, I.Y. Erdogan, Int. J. Hydrogen Energy 44 (2019) 18744–18755.
W.K. Han, J.W. Choi, G.H. Hwang, et al., Appl. Surf. Sci. 252 (2006) 2832–2838.
D. Ren, Y. Deng, A.D. Handoko, et al., ACS Catal. 5 (2015) 2814–2821.
doi: 10.1021/cs502128q
G. Kliche, Z.V. Popovic, Phys. Rev. B 42 (1990) 10060–10066.
S. Karthick Kumar, S. Murugesan, S. Suresh, Mater. Chem. Phys. 143 (2014) 1209–1214.
H. Matsuura, K. Fukuhara, J. Polym. Sci. B: Polym. Phys. 24 (1986) 1383–1400.
X.G. Zhang, S. Feng, C. Zhan, et al., J. Phys. Chem. Lett. 11 (2020) 6593–6599.
doi: 10.1021/acs.jpclett.0c01970
Y. Zhang, Y. Zhao, C. Wang, et al., Phys. Chem. Chem. Phys. 21 (2019) 21341–21348.
doi: 10.1039/c9cp03692j
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Yukang Xiong , Lin Lv , Guokun Ma , Hanbin Wang , Houzhao Wan , Hao Wang . Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery. Chinese Journal of Structural Chemistry, 2025, 44(11): 100699-100699. doi: 10.1016/j.cjsc.2025.100699
Le Han , Zhou Yuan , Bohan Li , Yuchi Zhang , Lin Yang , Yan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Hui Bian , Xinyi Yuan , Nan Zhang , Zhuo Xu , Juhong Lian , Ruibin Jiang , Junqing Yan , Deng Li , Shengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Liming Li , Yanchang Liu , Peng Kang , Donghui Feng , Yuguang Zhang , Hangxing Ren , Jianrong Zeng , He Zhu , Qiang Li , Xiaoya Cui . Scalable and rapid liquid synthesis of PtNi electrocatalyst for hydrogen evolution reaction. Chinese Chemical Letters, 2026, 37(2): 112022-. doi: 10.1016/j.cclet.2025.112022
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Bin Zhao , Heping Luo , Jiaqing Liu , Sha Chen , Han Xu , Yu Liao , Xue Feng Lu , Yan Qing , Yiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919
Chi Zhang , Zhilong Wang , Xinyue Wang , Yufei Zhang , Zhiguo Zhang , An Chen , Jinjin Li , Xitian Zhang , Lili Wu . Chip−like high−entropy oxide catalysts enhance fast sulfur evolution reaction for long−life lithium−sulfur batteries. Chinese Chemical Letters, 2025, 36(12): 110551-. doi: 10.1016/j.cclet.2024.110551
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Xia Gao , Shuaikang Sang , Enquan Zhu , Lihua Cai , Chang Liu , Ferdi Karadas , Chao Zhang , Jingxiang Low , Yujie Xiong . Highly dispersed Ni–O site on Ni catalysts for efficient and durable light-driven dry reforming of CH4 at ambient conditions. Chinese Journal of Structural Chemistry, 2025, 44(5): 100570-100570. doi: 10.1016/j.cjsc.2025.100570
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545