Citation: Jingyuan Luo, Liping Wu, Jinxi Yan, Xintong Lv, Yuqi Luo, Wei Jiang, Zhiqiang Xiong, Anqi Ni, Chongbo Liu, Renchao Che. Radar-stealth and thermal-insulating MOF-derived cellulose-carbon aerogels for broadband electromagnetic wave absorption[J]. Chinese Chemical Letters, ;2025, 36(7): 111065. doi: 10.1016/j.cclet.2025.111065 shu

Radar-stealth and thermal-insulating MOF-derived cellulose-carbon aerogels for broadband electromagnetic wave absorption

    * Corresponding authors.
    E-mail addresses: cbliu2002@163.com (C. Liu), rcche@fudan.edu.cn (R. Che).
    1 These authors contributed equally to this work.
  • Received Date: 24 December 2024
    Revised Date: 5 March 2025
    Accepted Date: 10 March 2025
    Available Online: 8 April 2025

Figures(4)

  • Considering the challenges posed by severe electromagnetic wave pollution and escalating international tensions, there is a critical need to develop advanced electromagnetic wave absorbing (EMWA) materials that integrate radar stealth and thermal insulation capabilities. In this study, we have synthesized three-dimensional (3D) porous composites comprising V2O3 nanoparticles embedded in Juncus effusus cellulose-derived carbon aerogels (VCA) using a self-templating method followed by high-temperature pyrolysis. The V2O3 nanoparticles possess a 3D V-V framework and a relatively narrow bandgap, facilitating the Mott transition for enhanced conductivity. Furthermore, their uniform dispersion on hollow carbon tubes of Juncus effusus promotes efficient electron transfer and creates numerous heterogeneous interfaces. Consequently, VCA-2 demonstrates outstanding EMWA performance, achieving a minimum reflection loss of −63.92 dB at a matching thickness of 2.0 mm and a maximum effective absorption bandwidth of 8.24 GHz at a thickness of 2.44 mm, covering nearly half of the tested frequency range. Additionally, the radar cross-section reduction reaches a peak value of 29.40 dB m2, underscoring the excellent radar stealth capabilities of the material. In summary, VCA exhibits exceptional EMWA, radar stealth, and thermal insulation properties, highlighting its potential for multifunctional applications in EMWA material development.
  • 加载中
    1. [1]

      J. Tao, L. Xu, C. Pei, et al., Adv. Funct. Mater. 33 (2023) 2211996.

    2. [2]

      H. Li, C. Liu, B. Dai, et al., J. Appl. Polym. Sci. 132 (2015) 42498.

    3. [3]

      C. Liu, L. Li, X. Zhang, et al., Polymer 150 (2018) 301–310.

    4. [4]

      H. Peng, Z. Xiong, Z. Gan, et al., Compos. Part. B: Eng. 224 (2021) 109170.

    5. [5]

      G. Liu, S. Zhang, Y. Cai, et al., J. Alloy. Compd. 983 (2024) 173802.

    6. [6]

      T. Xie, S. Li, L. Ma, et al., Carbon 208 (2023) 33–42.

    7. [7]

      Y. Wang, A. Haidry, Y. Liu, et al., Carbon 216 (2024) 118497.

    8. [8]

      S. Lupi, L. Baldassarre, B. Mansart, et al., Nat. Commun. 1 (2010) 105.

    9. [9]

      J. Zhu, X. Chen, A. Thang, et al., SmartMat 3 (2022) 384–416.  doi: 10.1002/smm2.1091

    10. [10]

      J. Zheng, Y. Zhang, X. Jing, et al., Colloids Surf. A 518 (2017) 188–196.

    11. [11]

      Y. Yan, Y. Luo, J. Ma, et al., Small 14 (2018) 1801815.

    12. [12]

      H. Yao, X. Bao, S. Ye, et al., Mater. Lett. 341 (2023) 134232.

    13. [13]

      C. Zhou, C. Wu, D. Liu, et al., Chem. Eur. J. 25 (2019) 2234–2241.  doi: 10.1002/chem.201805565

    14. [14]

      X. Lan, R. Wang, W. Liu, et al., Chem. Eng. J. 485 (2024) 149238.

    15. [15]

      X. Lin, Y. Zhou, J. Hong, et al., Chin. Chem. Lett. 35 (2024) 109835.  doi: 10.1016/j.cclet.2024.109835

    16. [16]

      P. Mou, J. Zhao, G. Wang, et al., Chem. Eng. J. 437 (2022) 135285.

    17. [17]

      A. Ni, Z. Xiong, Y. Zhang, et al., Carbon 221 (2024) 118930.

    18. [18]

      S. Tan, S. Guo, Y. Wu, et al., Adv. Funct. Mater. 35 (2025) 2415921.  doi: 10.1002/adfm.202415921

    19. [19]

      Y. Wang, Z. Zhou, J. Zhu, et al., Compos. Part B: Eng. 220 (2021) 108985.

    20. [20]

      W. Zhou, C. Jiang, X. Duan, et al., Carbohydr. Polym. 245 (2020) 116531.

    21. [21]

      X. Li, R. Hu, Z. Xiong, et al., Nano-Micro Lett. 16 (2024) 42.

    22. [22]

      X. Yang, L. Liang, C. Li, et al., Nano Lett. 25 (2024) 569–577.  doi: 10.3390/foods13040569

    23. [23]

      Y. Zhao, S. Tan, J. Yu, et al., Adv. Mater. 37 (2025) 2412845.  doi: 10.1002/adma.202412845

    24. [24]

      Y. Gao, Z. Lei, L. Pan, et al., Chem. Eng. J. 457 (2023) 141325.

    25. [25]

      B. Du, D. Zhang, J. Qian, et al., Adv. Compos. Hybrid Mater. 4 (2021) 1281–1291.  doi: 10.1007/s42114-021-00286-1

    26. [26]

      J. Zhao, H. Wang, Y. Li, et al., J. Colloid Interface Sci. 639 (2023) 68–77.

    27. [27]

      S. Lin, J. Lin, Z. Xiong, et al., Chem. Eng. J. 492 (2024) 152248.

    28. [28]

      P. Liu, Y. Wang, G. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2202588.

    29. [29]

      A. Elhassan, X. Lv, I. Abdalla, et al., Polymer 16 (2024) 1160.  doi: 10.3390/polym16081160

    30. [30]

      P. Wang, L. Gai, B. Hu, et al., Carbon 212 (2023) 118132.

    31. [31]

      J. Lin, J. Qiao, H. Tian, et al., Adv. Compos. Hybrid Mater. 6 (2023) 177.  doi: 10.1007/978-981-19-9612-2_11

    32. [32]

      L. Yang, Y. Wang, Z. Lu, et al., Carbon 205 (2023) 411–421.

    33. [33]

      X. Huang, J. Wei, Y. Zhang, et al., Nano-Micro Lett. 14 (2022) 107.  doi: 10.18306/dlkxjz.2022.01.010

    34. [34]

      T. Liu, Y. Zhang, C. Wang, et al., Small 20 (2024) 2308378.

    35. [35]

      P. Wang, D. Fan, L. Gai, et al., J. Mater. Chem. A 12 (2024) 8571–8582.  doi: 10.1039/d4ta00125g

    36. [36]

      Z. Zhou, Q. Zhu, Y. Liu, et al., Nano-Micro Lett. 15 (2023) 137.  doi: 10.1109/mlbdbi60823.2023.10482248

    37. [37]

      K. Cao, X. Yang, Y. Zhang, et al., Carbon 208 (2023) 111–122.

    38. [38]

      Y. Guo, Y. Duan, X. Liu, et al., Carbon 230 (2024) 119591.

    39. [39]

      D. Lei, C. Liu, C. Dong, et al., ACS Appl. Nano Mater. 7 (2024) 230–242.  doi: 10.1021/acsanm.3c04301

    40. [40]

      H. Wen, W. Xu, S. Lin, et al., Carbon 230 (2024) 119613.

    41. [41]

      L. Liang, Z. Li, Z. Bai, et al., Chin. Chem. Lett. 32 (2021) 870–874.  doi: 10.1016/j.cclet.2020.06.014

    42. [42]

      H. Fu, Y. Guo, J. Yu, et al., Chin. Chem. Lett. 33 (2022) 957–962.  doi: 10.1016/j.cclet.2021.07.027

    43. [43]

      I. Abdalla, J. Cai, W. Lu, et al., Carbon 213 (2023) 118300.

    44. [44]

      G. Dai, R. Deng, T. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2205325.

    45. [45]

      S. Chen, J. Han, X. Cheng, et al., Compos. Part B 274 (2024) 111279.

    46. [46]

      A. Elhassan, I. Abdalla, J. Yu, et al., Chem. Eng. J. 392 (2020) 123646.

    47. [47]

      H. Zhang, J. Cheng, K. Liu, et al., J. Colloid Interface Sci. 678 (2025) 950–958.

    48. [48]

      R. Hu, J. Luo, H. Wen, et al., Adv. Funct. Mater. 35 (2025) 2418304.  doi: 10.1002/adfm.202418304

    49. [49]

      C. Yang, E. He, P. Yang, et al., Compos. Part B 270 (2024) 111135.

    50. [50]

      C. Liu, T. He, C. Hu, et al., Adv. Funct. Mater. 35 (2025) 2416108.  doi: 10.1002/adfm.202416108

    51. [51]

      A. Elhassan, J. Li, I. Abdalla, et al., Adv. Funct. Mater. 35 (2025) 2407458.  doi: 10.1002/adfm.202407458

  • 加载中
    1. [1]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    2. [2]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    3. [3]

      Haiyang PengZhipeng XieShuiqing LuDa ZhangBin YangFeng Liang . Dual-functionality composites of polyaniline-coated oxidized carbon nanohorns: Efficient wave absorption and enhanced corrosion resistance. Chinese Chemical Letters, 2025, 36(6): 110818-. doi: 10.1016/j.cclet.2025.110818

    4. [4]

      Xinbao TongJiaying LiuYanqi ZhaoJingjun LiYe TianQingyi LiuShuiying GaoRong Cao . Metal-organic framework supported carbon quantum dots as white light-emitting phosphor. Chinese Chemical Letters, 2025, 36(7): 111058-. doi: 10.1016/j.cclet.2025.111058

    5. [5]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    6. [6]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    7. [7]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    8. [8]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    9. [9]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    10. [10]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    11. [11]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    12. [12]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    13. [13]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    14. [14]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    15. [15]

      Ming ZhongXue GuoYang LiuKun ZhaoHui PengSuijun LiuXiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    20. [20]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return