Citation: Jinzhou Zheng, Chaozheng He, Chenxu Zhao. Rational catalyst design for N2 electro-reduction: Regulation strategies and quick screen towards enhanced conversion efficiency[J]. Chinese Chemical Letters, ;2025, 36(7): 111056. doi: 10.1016/j.cclet.2025.111056 shu

Rational catalyst design for N2 electro-reduction: Regulation strategies and quick screen towards enhanced conversion efficiency

    * Corresponding authors.
    E-mail addresses: hecz2019@xatu.edu.cn (C. He), zhaochenxu@xatu.edu.cn (C. Zhao).
  • Received Date: 19 December 2024
    Revised Date: 23 February 2025
    Accepted Date: 7 March 2025
    Available Online: 7 March 2025

Figures(5)

  • Ammonia is a key industry raw material for fertilizers and the electro-reduction of N2 (NRR) can be served as a promising method. It is urgently needed to discover advanced catalysts while the lack of design principles still hinders the high-throughput screen of efficient candidates. Herein, we have provided an up-to-date review of NRR catalysts mainly on theoretical works and highlighted the latest achievements on descriptors, which can be served as valid guidance of optimal catalysts. The descriptors are classified with adsorption energy and the corresponding derived ones, which can screen the NRR catalysts from various aspects. Finally, the challenges and opportunities in the descriptor field are presented.
  • 加载中
    1. [1]

      L. Wang, M. Xia, H. Wang, et al., Joule 2 (2018) 1055-1074.

    2. [2]

      N. Cao, G. Zheng, Nano Res. 11 (2018) 2992-3008.  doi: 10.1007/s12274-018-1987-y

    3. [3]

      D. Liu, M. Chen, X. Du, et al., Adv. Funct. Mater. 31 (2021) 2008983.

    4. [4]

      S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energ. 38 (2013) 14576-14594.

    5. [5]

      S. Giddey, S. P. S. Badwal, C. Munnings, M. Dolan, ACS Sustainable Chem. Eng. 5 (2017) 10231-10239.  doi: 10.1021/acssuschemeng.7b02219

    6. [6]

      U. B. Demirci, P. Miele, J. Cleaner Prod. 52 (2013) 1-10.

    7. [7]

      Z. Ma, Y. Luo, P. Wu, et al., Adv. Funct. Mater. 33 (2023) 2302475.

    8. [8]

      G. Ercolino, M. A. Ashraf, V. Specchia, S. Specchia, Appl. Energy 143 (2015) 138-153.

    9. [9]

      J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1 (2008) 636-639.  doi: 10.1038/ngeo325

    10. [10]

      K. Wang, D. Smith, Y. Zheng, Carbon Resour. Convers. 1 (2018) 2-31.  doi: 10.3847/2515-5172/aaa4c2

    11. [11]

      H. P. Jia, E. A. Quadrelli, Chem. Soc. Rev. 43 (2014) 547-564.

    12. [12]

      C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183-5191.

    13. [13]

      K. Nagaoka, T. Eboshi, Y. Takeishi, et al., Sci. Adv. 3 (2017) e1602747.

    14. [14]

      S. L. Foster, S. I. P. Bakovic, R. D. Duda, et al., Nat. Catal. 1 (2018) 490-500.  doi: 10.1038/s41929-018-0092-7

    15. [15]

      L. Malavasi, C. A. J. Fisher, M. S. Islam, Chem. Soc. Rev. 39 (2010) 4370.  doi: 10.1039/b915141a

    16. [16]

      D. J. L. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Soc. Rev. 37 (2008) 1568.  doi: 10.1039/b612060c

    17. [17]

      G. Zhai, D. Xu, S. Zhang, et al., Adv. Funct. Mater. 30 (2020) 2005779.

    18. [18]

      M. Yuan, Q. Li, J. Zhang, et al., Adv. Funct. Mater. 30 (2020) 2004208.

    19. [19]

      W. Liao, L. Qi, Y. Wang, et al., Adv. Funct. Mater. 31 (2021) 2009151.

    20. [20]

      J. D. Ramirez, V. Kyriakou, I. Garagounis, et al., ACS Sustainable Chem. Eng. 5 (2017) 8844-8851.

    21. [21]

      G. Qing, R. Ghazfar, S. T. Jackowski, et al., Chem. Rev. 120 (2020) 5437-5516.  doi: 10.1021/acs.chemrev.9b00659

    22. [22]

      D. Liu, J. Wang, S. Bian, et al., Adv. Funct. Mater. 30 (2020) 2002731.

    23. [23]

      H. Liu, X. Cao, L. Ding, H. Wang, Adv. Funct. Mater. 32 (2022) 2111161.

    24. [24]

      X. Shen, S. Liu, X. Xia, et al., Adv. Funct. Mater. 32 (2022) 2109422.

    25. [25]

      H. Zou, L. J. Arachchige, W. Rong, et al., Adv. Funct. Mater. 32 (2022) 2200333.

    26. [26]

      J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 8 (2015) 2180-2186.  doi: 10.1002/cssc.201500322

    27. [27]

      R. Aayush, S. Brian, A. R. Jay, et al., ACS Catal. 7 (2017) 706-709.

    28. [28]

      W. Fu, Y. Cao, Q. Feng, et al., Nanoscale 11 (2019) 1379.  doi: 10.1039/c8nr08724e

    29. [29]

      L. Fu, L. Yan, L. Lin, et al., Alloys Compd. 875 (2021) 159907.

    30. [30]

      Y. Ying, K. Fan, X. Luo, H. Huang, J. Mater. Chem. A 7 (2019) 11444.  doi: 10.1039/c8ta11605a

    31. [31]

      X. Liu, Z. Wang, J. Zhao, J. Zhao, Y. Liu, Appl. Surf. Sci. 487 (2019) 833-839.

    32. [32]

      F. Li, Q. Tang, Nanoscale 11 (2019) 18769.  doi: 10.1039/c9nr06469a

    33. [33]

      P. Ou, X. Zhou, F. Meng, et al., Nanoscale 11 (2019) 13600.  doi: 10.1039/c9nr02586c

    34. [34]

      C. Ji, A. A. Adeleke, L. Yang, et al., Sci. Adv. 6 (2020) eaba9206.

    35. [35]

      Z. Sun, R. Huo, C. Choi, et al., Nano Energy 62 (2019) 869-875.

    36. [36]

      H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 139 (2017) 10929-10936.  doi: 10.1021/jacs.7b06634

    37. [37]

      G. Zhang, Q. Jia, K. Zhang, et al., Nano Energy 59 (2019) 10-16.

    38. [38]

      H. Jin, L. Li, X. Liu, et al., Adv. Mater. 31 (2019) 1902709.

    39. [39]

      L. Zeng, S. Chen, J. van der Zalm, X. Li, A. Chen, Chem. Commun. 55 (2019) 7386.  doi: 10.1039/c9cc02607j

    40. [40]

      T. Wu, X. Zhu, Z. Xing, et al., Angew. Chem. Int. Ed. 58 (2019) 18449-19453.  doi: 10.1002/anie.201911153

    41. [41]

      L. M. Azofra, C. H. Sun, L. Cavallo, et al., Chem. Eur. J. 23 (2017) 8275-8279.  doi: 10.1002/chem.201701113

    42. [42]

      L. Wang, M. Wu, X. Lang, S. Gao, W. Wang, ChemCatChem 12 (2020) 3937-3945.  doi: 10.1002/cctc.202000185

    43. [43]

      L. Xia, J. Yang, H. Wang, et al., Chem. Commun. 55 (2019) 3371.  doi: 10.1039/c9cc00602h

    44. [44]

      Z. Feng, Y. Tan, W. Chen, et al., Mol. Catal. 483 (2019) 110705.

    45. [45]

      Q. Liu, S. Wang, G. Chen, Q. Liu, X. Kong, Inorg. Chem. 58 (2019) 11843-11849.  doi: 10.1021/acs.inorgchem.9b02280

    46. [46]

      C. Fang, W. An, Nano Res. 14 (2021) 4211-4219.  doi: 10.1007/s12274-021-3373-4

    47. [47]

      T. Wu, H. Zhao, X. Zhu, et al., Adv. Mater. 32 (2020) 20200299.

    48. [48]

      C. Ren, Q. Jiang, W. Lin, et al., ACS Appl. Nano Mater. 3 (2020) 5149-5159.  doi: 10.1021/acsanm.0c00512

    49. [49]

      Y. Sun, Z. Deng, X. Song, et al., Nano Micro. Lett. 12 (2020) 133.

    50. [50]

      E. Skulason, T. Bligaard, J. K. Norskov, et al., Phys. Chem. Chem. Phys. 14 (2012) 1235-1245.

    51. [51]

      Z. Feng, Y. Tang, W. Chen, et al., Phys. Chem. Chem. Phys. 22 (2020) 9216.  doi: 10.1039/d0cp00722f

    52. [52]

      X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 141 (2019) 9664-9672.  doi: 10.1021/jacs.9b03811

    53. [53]

      X. Guo, J. Gu, S. Lin, et al., J. Am. Chem. Soc. 142 (2020) 5709-5721.  doi: 10.1021/jacs.9b13349

    54. [54]

      J. G. Howalt, T. Bligaard, J. Rossmeislb, T. Vegge, Phys. Chem. Chem. Phys. 15 (2013) 7785.  doi: 10.1039/c3cp44641g

    55. [55]

      X. Guo, S. Lin, J. Gu, et al., Adv. Funct. Mater. 31 (2020) 202008056.

    56. [56]

      T. Deng, C. Cen, H. Shen, et al., J. Phys. Chem. Lett. 11 (2020) 6320-5329.  doi: 10.1021/acs.jpclett.0c01450

    57. [57]

      X. Li, Q. Li, J. Cheng, et al., J. Am. Chem. Soc. 138 (2016) 8706-8709.  doi: 10.1021/jacs.6b04778

    58. [58]

      F. Liu, L. Song, Y. Liu, et al., J. Am. Chem. Soc. 8 (2020) 3598-3605.  doi: 10.1039/c9ta12345h

    59. [59]

      X. Wang, S. Ye, W. Hu, et al., J. Am. Chem. Soc. 142 (2020) 7737-3343.  doi: 10.1021/jacs.0c01825

    60. [60]

      X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 8 (2018) 1800369.

    61. [61]

      J. Hou, M. Yang, J. Zhang, Nanoscale 12 (2020) 6900-6920.  doi: 10.1039/d0nr00412j

    62. [62]

      H. Xu, K. Ithisuphalap, Y. Li, et al., Nano Energy 69 (2020) 104469.

    63. [63]

      L. Chen, C. He, R. Wang, et al., Chin. Chem. Lett. 32 (2021) 53-56.

    64. [64]

      D. Ma, Z. Zeng, L. Liu, Y. Jia, J. Energy Chem. 54 (2021) 501-509.

    65. [65]

      W. Song, J. Wang, L. Fu, et al., Chin. Chem. Lett. 32 (2021) 3137-3142.

    66. [66]

      R. Wang, C. He, W. Chen, C. Zhao, J. Huo, Chin. Chem. Lett. 32 (2021) 3821-3824.

    67. [67]

      J. Yang, W. Weng, W. Xiao, J. Energy Chem. 43 (2020) 195-207.

    68. [68]

      C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 140 (2018) 14161-14168.  doi: 10.1021/jacs.8b07472

    69. [69]

      L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 10 (2020) 6870-6899.  doi: 10.1021/acscatal.0c01081

    70. [70]

      M. A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, et al., Science 359 (2018) 896-900.  doi: 10.1126/science.aaq1684

    71. [71]

      C. Lv, L. Zhong, Y. Yao, et al., Chem 6 (2020) 2690-2702.  doi: 10.1016/j.chempr.2020.07.006

    72. [72]

      Y. Sun, Y. Wang, H. Li, et al., J. Energy Chem. 62 (2021) 51-70.

    73. [73]

      S. Liu, M. Wang, H. Ji, et al., Natl Sci Rev 8 (2021) nwaa136.  doi: 10.1093/nsr/nwaa136

    74. [74]

      J.C. Liu, X.L. Ma, Y. Li, et al., Nat. Commun. 9 (2018) 1610.

    75. [75]

      C. Cui, H. Zhang, Z. Luo, Nano Res. 13 (2020) 2280-2288.  doi: 10.1007/s12274-020-2847-0

    76. [76]

      J. Zhao, Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480-12487.  doi: 10.1021/jacs.7b05213

    77. [77]

      X. Guo, S. Huang, Electrochim. Acta 284 (2018) 392-399.

    78. [78]

      H. Tao, C. Choi, L.X. Ding, et al., Chem 5 (2019) 204-214.

    79. [79]

      S. Tang, Q. Dang, T. Liu, et al., J. Am. Chem. Soc. 142 (2020) 19308-19315.  doi: 10.1021/jacs.0c09527

    80. [80]

      C. Zhao, M. Xi, J. Huo, C. He, L. Fu, Chin. Chem. Lett. 34 (2023) 107213.

    81. [81]

      C. He, Y. Yu, C. Zhao, J. Huo, Chin. Chem. Lett. 34 (2023) 107897.

    82. [82]

      C. He, H. Yang, L. Fu, Chin. Chem. Lett. 34 (2023) 107581.

    83. [83]

      V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, et al., Angew. Chem. Int. Ed. 45 (2006) 2897-2901.  doi: 10.1002/anie.200504386

    84. [84]

      J. K. Nørskov, J. Rossmeisl, A. Logadottir, et al., J. Phys. Chem. B 108 (2004) 17886-17892.  doi: 10.1021/jp047349j

    85. [85]

      A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.Z. Qiao, Chem 4 (2018) 1809-1831.

    86. [86]

      W. Ju, A. Bagger, G. Hao, et al., Nat. Commun. 8 (2017) 944.

    87. [87]

      M. Wang, S. Liu, T. Qian, et al., Nat. Commun. 10 (2019) 341.  doi: 10.1038/s41467-018-08120-x

    88. [88]

      F. Lu, S. Zhao, R. Guo, et al., Nano Energy 61 (2019) 420-427.

    89. [89]

      Y. Basdogan, A. M. Maldonado, J. A. Keith, et al., WIREs Comp. Mol. Sci. 10 (2020) e1446.  doi: 10.1002/wcms.1446

    90. [90]

      J. A. Gauthier, S. Ringe, C. F. Dickens, et al., ACS Catal. 9 (2019) 920-931.  doi: 10.1021/acscatal.8b02793

    91. [91]

      X. Lv, W. Wei, B. Huang, Y. Dai, T. Frauenheim, Nano Lett. 21 (2021) 1871-1878.  doi: 10.1021/acs.nanolett.0c05080

    92. [92]

      H. Xu, D. Cheng, D. Cao, X.C. Zeng, Nat. Catal. 1 (2018) 339-348.  doi: 10.1038/s41929-018-0063-z

    93. [93]

      Z. Xue, X. Zhang, J. Qin, R. Liu, Nano Energy 80 (2021) 105527.  doi: 10.1016/j.phrs.2021.105527

    94. [94]

      W. Gao, Y. Chen, B. Li, et al., Nat. Commun. 11 (2020) 1196.  doi: 10.1038/s41467-020-14969-8

    95. [95]

      X. Liu, L. Qi, E. Song, W. Gao, Catal. Lett. 153 (2022) 300-310.

  • 加载中
    1. [1]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    2. [2]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    3. [3]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    4. [4]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    5. [5]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    6. [6]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    7. [7]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    8. [8]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    9. [9]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    10. [10]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    11. [11]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    12. [12]

      Jingtao BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Corrigendum to “Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation” [Chinese Chemical Letters 35 (2024) 109639]. Chinese Chemical Letters, 2025, 36(7): 110867-. doi: 10.1016/j.cclet.2025.110867

    13. [13]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    14. [14]

      Xibei TanRongrong WangNaif Abdullah Al-DhabiBin WangRongfan ChenQian ZhangDao ZhouWangwang TangHongyu Wang . Exploring the regulation mechanism of signaling molecules on algal-bacterial granular sludge through different N-acyl-homoserine lactones. Chinese Chemical Letters, 2025, 36(7): 110515-. doi: 10.1016/j.cclet.2024.110515

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    17. [17]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    18. [18]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    19. [19]

      Kexiang ZhaoZongrui WangQi-Yuan WanJing-Cai ZengLi DingJie-Yu WangJian Pei . Janus-type BN-embedded perylene diimides via a "shuffling" strategy: Regioselective functionalizable building block towards high-performance n-type organic semiconductors. Chinese Chemical Letters, 2025, 36(6): 110339-. doi: 10.1016/j.cclet.2024.110339

    20. [20]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return