Citation: Zhenhui Song, Xing Wu, Tianyu Gao, Fubing Yao, Xi Tang, Qaisar Mahmood, Chong-Jian Tang. Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review[J]. Chinese Chemical Letters, ;2025, 36(12): 111008. doi: 10.1016/j.cclet.2025.111008 shu

Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review

    * Corresponding authors at: School of Metallurgy and Environment, Central South University, Changsha 410083, China.
    E-mail addresses: yaofubing@csu.edu.cn (F. Yao), chjtang@csu.edu.cn (C.-J. Tang).
  • Received Date: 31 October 2024
    Revised Date: 13 January 2025
    Accepted Date: 26 February 2025
    Available Online: 26 February 2025

Figures(6)

  • Multi-components landfill leachate is one type of wastewater that is challenging to deal with. The excellent degrading ability and low secondary pollution of electrochemical oxidation make it a promising technology for leachate treatment. However, the commercial application of this method is restricted by some technical barriers such as limited anode activity and intricate operating conditions. To improve the efficiency of electrochemical leachate treatment, many researchers commit to developing efficient electrode and optimizing operation process for eliminating these limitations. This review summarized the recently studied countermeasures for accelerating the performance of electrochemical oxidation of leachate with respect to the electron transfer, active sites and stability of electrode. The performance of electrochemical leachate treatment with different anode and the corresponding underlying mechanisms were summarized and discussed. Besides, the effects of critical parameters including temperature, pH, current density and electrolyte on reaction were discussed. With these in mind, this work offers recommendations for the improvement of electrooxidation performance as well as direction for the design of leachate treatment engineering.
  • 加载中
    1. [1]

      S. Ma, C. Zhou, J. Pan, et al., J. Clean. Prod. 333 (2022) 130234.

    2. [2]

      J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, J.V. Weber, Environ. Chem. Lett. 4 (2006) 51–61.  doi: 10.1007/s10311-005-0016-z

    3. [3]

      Z. Guo, Y. Zhang, H. Jia, et al., Sci. Total Environ. 806 (2022) 150529.

    4. [4]

      D. Liu, Y. Yuan, Y. Wei, et al., J. Environ. Sci. 116 (2022) 43–51.

    5. [5]

      N. Aishi, D. Animesh, Mater. Today Proc. 67 (2022) 1290–1297.

    6. [6]

      Y. Deng, C.M. Ezyske, Water Res. 45 (2011) 6189–6194.

    7. [7]

      C. Qu, L. Li, F. Feng, et al., Front. Environ. Sci. Eng. 17 (2023) 115–126.

    8. [8]

      Z. Ma, Y. Yang, Y. Jiang, et al., Chem. Eng. J. 311 (2017) 183–190.

    9. [9]

      M. Umar, H.A. Aziz, M.S. Yusoff, Waste Manag. 30 (2010) 2113–2121.

    10. [10]

      G. Boczkaj, A. Fernandes, Chem. Eng. J. 320 (2017) 608–633.

    11. [11]

      I. Hussain, Y. Zhang, S. Huang, RSC Adv. 4 (2014) 3502–3511.

    12. [12]

      H. Mohammadi, B. Bina, A. Ebrahimi, Process Saf. Environ. Prot. 117 (2018) 200–213.

    13. [13]

      A. Cabeza, A. Urtiaga, M.J. Rivero, I. Ortiz, J. Hazard. Mater. 144 (2007) 715–719.

    14. [14]

      O.T. Can, L. Gazigil, R. Keyikoglu, Environ. Prog. Sustain. Energy 41 (2022) 13722.

    15. [15]

      Y. Zhang, Z. Zheng, H. Liu, et al., J. Chongqing Univ. 46 (2022) 76–88.

    16. [16]

      B.K.D. Pubali Mandal, A.K Gupta, Waste Manag. 69 (2017) 250–273.

    17. [17]

      S.L. He, Q. Huang, Y. Zhang, Y.L. Nie, Water Air Soil Pollut. 226 (2015) 1–7.  doi: 10.1111/age.12236

    18. [18]

      M. Fukushima, K. Tatsumi, S. Nagao, Environ. Sci. Technol. 17 (2001) 3683–3690.

    19. [19]

      F. Feng, Z. Liu, X. Tang, et al., Water Res. 229 (2023) 119393.

    20. [20]

      J. Li, Z. Yang, H. Xu, et al., RSC Adv. 6 (2016) 47509–47519.

    21. [21]

      P. Mandal, A.K. Gupta, B.K. Dubey, J. Water Process Eng. 33 (2020) 101119.

    22. [22]

      B. Biswas, S. Goel, Chemosphere 302 (2022) 134709.

    23. [23]

      Y.G. Asfaha, A.K. Tekile, F. Zewge, Clean. Eng. Technol. 4 (2021) 100261.

    24. [24]

      S.B.M.S.S. Movahed, Environ. Sci. Pollut. Res. 28 (2021) 59594–59607.

    25. [25]

      M.J. Park, T. Lee, J. Korean Soc. Water Sci. Technol. 28 (2020) 31–38.  doi: 10.17640/kswst.2020.28.3.31

    26. [26]

      R. Fu, P.-S. Zhang, Y.X. Jiang, L. Sun, X.H. Sun, Chemosphere 311 (2022) 136993.

    27. [27]

      C. Tang, W. Yan, C. Zheng, Front. Environ. Sci. Eng. 8 (2014) 337–344.  doi: 10.1007/s11783-013-0545-9

    28. [28]

      F. Abdelmalek, R.A. Torres, E. Combet, et al., Sep. Purif. Technol. 63 (2008) 30–37.

    29. [29]

      L. Weihua, M. Ji, X. Zhang, J. Yang, Environ. Chem. 26 (2007) 58–61.

    30. [30]

      N. Sergienko, E.C. Lumbaque, N. Duinslaeger, J. Radjenovic, Appl. Catal. B: Environ. 334 (2023) 122831.

    31. [31]

      L. Trotochaud, S.W. Boettcher, Scripta Mater. 74 (2014) 25–32.

    32. [32]

      R. Zhang, J. Cao, T. Peng, K. Wu, Y. Shu, Electrochim. Acta 487 (2024) 144166.

    33. [33]

      Y. Zhang, W. Tang, J. Bai, et al., J. Hazard. Mater. 424 (2022) 127662.

    34. [34]

      Y. Deng, J.D. Englehardt, Waste Manag. 27 (2007) 380–388.

    35. [35]

      A. Thiam, E. Brillas, F. Centellas, P.L. Cabot, I. Sirés, Electrochim. Acta 173 (2015) 523–533.

    36. [36]

      B. Xu, S.M. Iskander, Z. He, Environ. Res. 182 (2020) 109006.

    37. [37]

      L.C. Chiang, J.E. Chang, T.C. Wen, Water Res. 29 (1995) 671–678.

    38. [38]

      J. Radjenovic, M. Petrovic, Water Res. 94 (2016) 128–135.

    39. [39]

      A.N. Arenhart Heberle, M. Garcia-Gabaldon, E.M. Ortega, A.M. Bernardes, V. Perez-Herranz, Chemosphere 236 (2019) 124318.

    40. [40]

      K.C. de Freitas Araujo, D.R. da Silva, E.V. dos Santos, H. Varela, C.A. Martinez-Huitle, J. Electroanal. Chem. 860 (2020) 133927.

    41. [41]

      J. Cai, T. Niu, P. Shi, G. Zhao, Small 15 (2019) 1900153.

    42. [42]

      S.O. Ganiyu, C.A. Martínez-Huitle, M.A. Oturan, Curr. Opin. Electrochem. 27 (2021) 100678.

    43. [43]

      L. Chen, C. Lei, Z. Li, et al., Chemosphere 210 (2018) 516–523.

    44. [44]

      D.D. Kiper, M. Qui, G. Passard, C. Costentin, D. Nocera, Abstr. Pap. Am. Chem. Soc. 258 (2019) 8671–8679.

    45. [45]

      J. Radjenovic, D.L. Sedlak, Environ. Sci. Technol. 49 (2015) 11292–11302.  doi: 10.1021/acs.est.5b02414

    46. [46]

      P. Devi, U. Das, A.K. Dalai, Sci. Total Environ. 571 (2016) 643–657.

    47. [47]

      Z. Gu, W. Chen, Q. Li, A. Zhang, Process Saf. Environ. Prot. 133 (2020) 32–40.

    48. [48]

      L. Cui, Y. Zhang, K. He, M. Sun, Z. Zhang, Sep. Purif. Technol. 293 (2022) 121112.

    49. [49]

      T. Maqbool, Q.V. Ly, K. He, et al., J. Membr. Sci. 651 (2022) 120460.

    50. [50]

      L. Pinhedo, R. Pelegrini, R. Bertazzoli, A. Motheo, Appl. Catal. B: Environ. 57 (2005) 75–81.

    51. [51]

      H.-R. Schulten, Fresenius J. Anal. Chem. 351 (1995) 62–73.

    52. [52]

      M. Zhou, Z. Wu, Y. Cong, Q. Ye, D. Wang, China Environ. Sci. 23 (2003) 225–229.

    53. [53]

      Q. Qiao, S. Singh, S.L. Lo, et al., Chemosphere 275 (2021) 129848.

    54. [54]

      T. Xu, X. Xiao, H. Liu, China Environ. Sci. 24 (2004) 547–551.

    55. [55]

      D. Pang, Y. Liu, H. Song, et al., Chem. Eng. J. 405 (2021) 126982.

    56. [56]

      M. Panizza, M. Delucchi, I. Sirés, J. Appl. Electrochem. 40 (2010) 1721–1727.  doi: 10.1007/s10800-010-0109-7

    57. [57]

      L. Tran Le, Environ. Technol. Innov. 20 (2020) 101099.

    58. [58]

      Z. Zhang, J. Liu, H. Ai, et al., J. Environ. Chem. Eng. 11 (2023) 109834.

    59. [59]

      S. Liu, R. Liu, Y. Zhang, et al., Chemosphere 237 (2019) 124471.

    60. [60]

      M.J. Nunes, N. Monteiro, M.J. Pacheco, A. Lopes, L. Ciríaco, J. Environ. Sci. Health Part A 51 (2016) 839–846.  doi: 10.1080/10934529.2016.1181455

    61. [61]

      Y. Wang, M. Chen, C. Wang, et al., Chem. Eng. J. 374 (2019) 626–636.

    62. [62]

      I. Elaissaoui, H. Akrout, S. Grassini, D. Fulginiti, L. Bousselmi, Mater. Des. 110 (2016) 633–643.

    63. [63]

      C. Tang, Z. Liu, D. Cui, et al., Electrochim. Acta 399 (2021) 139398.

    64. [64]

      S. Man, D. Luo, Q. Sun, et al., J. Hazard. Mater. 430 (2022) 128440.

    65. [65]

      G. Zhang, L. Zhao, X. Hu, X. Zhu, F. Yang, Appl. Catal. B: Environ. 313 (2022) 121453.

    66. [66]

      M.X. Qiao, Y. Zhang, L.F. Zhai, M. Sun, Chem. Eng. J. 344 (2018) 410–418.

    67. [67]

      C.A. Martinez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Chem. Rev. 115 (2015) 13362–13407.  doi: 10.1021/acs.chemrev.5b00361

    68. [68]

      H. Lin, R. Xiao, R. Xie, et al., Environ. Sci. Technol. 55 (2021) 2597–2607.  doi: 10.1021/acs.est.0c06881

    69. [69]

      Z. Pan, C. Song, L. Li, et al., Chem. Eng. J. 376 (2019) 120909.

    70. [70]

      B.P. Chaplin, Environ. Sci. Process. Impacts 16 (2014) 1182–1203.

    71. [71]

      P. Gayen, J. Spataro, S. Avasarala, et al., Environ. Sci. Technol. 52 (2018) 9370–9379.  doi: 10.1021/acs.est.8b03038

    72. [72]

      L. Guo, Y. Jing, B.P. Chaplin, Environ. Sci. Technol. 50 (2016) 1428–1436.  doi: 10.1021/acs.est.5b04366

    73. [73]

      L. Wang, J. Lu, L. Li, Y. Wang, Q. Huang, Water Res. 170 (2020) 115254.

    74. [74]

      O. Ganzenko, P. Sistat, C. Trellu, et al., Chem. Eng. J. 419 (2021) 129467.

    75. [75]

      S. Liu, Y. Wang, X. Zhou, et al., Electrochim. Acta 253 (2017) 357–367.

    76. [76]

      H. Lin, H. Peng, X. Feng, et al., Water Res. 190 (2021) 116790.

    77. [77]

      M. Martí-Calatayud, E. Dionís, S. Mestre, V. Pérez-Herranz, J. Clean. Prod. 363 (2022) 132342.

    78. [78]

      A. Chen, S. Xia, H. Pan, et al., J. Electroanal. Chem. 824 (2018) 169–174.

    79. [79]

      L. Chang, Y. Zhou, X. Duan, W. Liu, D. Xu, J. Taiwan Inst. Chem. Eng. 45 (2014) 1338–1346.

    80. [80]

      Y. Qin, T. Yu, S. Deng, et al., Nat. Commun. 13 (2022) 1–8.

    81. [81]

      S. Anuchai, S. Phanichphant, D. Tantraviwat, et al., J. Colloid Interface Sci. 512 (2018) 105–114.

    82. [82]

      J. Xie, J. Ma, C. Zhang, et al., Environ. Sci. Technol. 54 (2020) 5227–5236.  doi: 10.1021/acs.est.9b07398

    83. [83]

      W. Li, R. Xiao, J. Xu, et al., Water Res. 216 (2022) 118287.

    84. [84]

      W. Li, R. Xiao, H. Lin, et al., J. Hazard. Mater. 424 (2022) 127342.

    85. [85]

      S.S.P. Rahardjo, Y.J. Shih, Chem. Eng. J. 452 (2023) 139370.

    86. [86]

      H. Xie, H. Zhang, X. Wang, et al., Front. Environ. Sci. Eng. 18 (2024) 3–15.

    87. [87]

      J. Cai, M. Zhou, Y. Pan, X. Du, X. Lu, Appl. Catal. B: Environ. 257 (2019) 117902.

    88. [88]

      M. Pierpaoli, P. Jakobczyk, M. Sawczak, et al., J. Hazard. Mater. 401 (2021) 123407.

    89. [89]

      T. Lim, G.Y. Jung, J.H. Kim, et al., Nat. Commun. 11 (2020) 1–11.

    90. [90]

      P. Jakóbczyk, G. Skowierzak, I. Kaczmarzyk, et al., Chemosphere 304 (2022) 135381.

    91. [91]

      M. Zhou, W. Fu, H. Gu, L. Lei, Electrochim. Acta 52 (2007) 6052–6059.

    92. [92]

      C. Zhang, Y. Jiang, Y. Li, et al., Chem. Eng. J. 228 (2013) 455–467.

    93. [93]

      G. Lv, D. Wu, R. Fu, J. Hazard. Mater. 165 (2009) 961–966.

    94. [94]

      W. Can, H. Yao-Kun, Z. Qing, J. Min, Chem. Eng. J. 243 (2014) 1–6.

    95. [95]

      L. Yan, H. Ma, B. Wang, Y. Wang, Y. Chen, Desalination 276 (2011) 397–402.

    96. [96]

      Y. Chen, W. Shi, H. Xue, et al., Electrochim. Acta 58 (2011) 383–388.

    97. [97]

      P. Li, Y. Zhao, L. Wang, et al., Electrochemistry 82 (2014) 1056–1060.  doi: 10.5796/electrochemistry.82.1056

    98. [98]

      Y. Deng, X. Zhu, N. Chen, et al., Sci. Total Environ. 745 (2020) 140768.

    99. [99]

      S. Veli, A. Arslan, M. Isgoren, D. Bingol, D. Demiral, Environ. Chall. 5 (2021) 100369.

    100. [100]

      J.F. Perez, J. Llanos, C. Saez, et al., Chem. Eng. J. 351 (2018) 766–772.

    101. [101]

      L.C. Chiang, J.E. Chang, C.T. Chung, Environ. Eng. Sci. 18 (2001) 369–379.  doi: 10.1089/109287501753359609

    102. [102]

      A. Urtiaga, A. Rueda, A. Anglada, I. Ortiz, J. Hazard. Mater. 166 (2009) 1530–1534.

    103. [103]

      Y.Y. Chu, M.H. Zhu, C. Liu, Environ. Eng. Sci. 32 (2015) 445–450.  doi: 10.1089/ees.2014.0433

    104. [104]

      G. Del Moro, L. Prieto-Rodriguez, M. De Sanctis, et al., Chem. Eng. J. 288 (2016) 87–98.

    105. [105]

      P.B. Moraes, R. Bertazzoli, Chemosphere 58 (2005) 41–46.

    106. [106]

      T.L. Luu, Environ. Technol. Innov. 20 (2020) 101099.

    107. [107]

      D. Yu, Y. Pei, J. Environ. Manage. 321 (2022) 115890.

    108. [108]

      X.-M. Li, China Water Wastewater 17 (2001) 14–17.

    109. [109]

      M. Panizza, C.A. Martinez-Huitle, Chemosphere 90 (2013) 1455–1460.

    110. [110]

      T. Cui, Y. Zhang, W. Han, et al., Chem. Eng. J. 315 (2017) 335–344.

    111. [111]

      S.Y. Guvenc, Y. Daniser, E. Can-Güven, G. Varank, A. Demir, Environ. Eng. Res. 28 (2023) 210419.

    112. [112]

      K. Pan, M. Tian, Z.H. Jiang, B. Kjartanson, A. Chen, Electrochim. Acta 60 (2012) 147–153.

    113. [113]

      E. Turro, A. Giannis, R. Cossu, et al., J. Hazard. Mater. 190 (2011) 460–465.

    114. [114]

      C. Zhang, M. Zhou, G. Ren, et al., Water Res. 70 (2015) 414–424.

    115. [115]

      H. Feng, Z. Chen, X. Wang, S. Chen, J. Crittenden, Chem. Eng. J. 413 (2021) 921–928.  doi: 10.1111/poms.13285

    116. [116]

      J. Kim, G.V. Korshin, Ozone Sci. Eng. 30 (2008) 113–119.

    117. [117]

      Y. Sun, P. Li, H. Zheng, et al., Chem. Eng. J. 308 (2017) 1233–1242.

    118. [118]

      T. Hasnine, E.C. Lumbaque, Q. Yuan, Environ. Technol. 39 (12) (2023) 2687–2703.

    119. [119]

      B. Cifcioglu-Gozuacik, S.M. Ergenekon, B. Ozbey-Unal, et al., Water Sci. Technol. 84 (2021) 752–762.  doi: 10.2166/wst.2021.261

    120. [120]

      P. Mandal, M.K. Yadav, A.K. Gupta, B.K. Dubey, Sep. Purif. Technol. 247 (2020) 116910.

    121. [121]

      H.J. Fan, H.Y. Shu, H.S. Yang, W.C. Chen, Sci. Total Environ. 361 (2006) 25–37.

    122. [122]

      A.Y. Bagastyo, D.J. Batstone, K. Rabaey, J. Radjenovic, Water Res. 47 (2013) 242–250.

    123. [123]

      Q. Lv, X. Zang, X. Li, G. Li, Fluid Phase Equilib. 458 (2018) 272–277.

    124. [124]

      A.Y. Bagastyo, D.J. Batstone, K. Rabaey, J. Radjenovic, Water Res. 47 (2013) 242–250.

    125. [125]

      R. Zhao, J. Chen, J. Liu, M. Li, H. Yang, Water Sci. Technol. 87 (2023) 366–380.  doi: 10.2166/wst.2023.002

    126. [126]

      L. Hu, L. Shi, F. Shen, et al., Water Res. 225 (2022) 119210.

    127. [127]

      R. Mao, X. Zhao, H. Lan, H. Liu, J. Qu, Water Res. 77 (2015) 1–12.

    128. [128]

      L. Rui, L. Guoyuan, Z. Shunming, et al., Ind. Water Treat. 14 (2024) 12–25.  doi: 10.21656/1000-0887.440186

    129. [129]

      Z. Wang, Z. Cui, D. Zhao, et al., China Energy Environ. Prot. 46 (2024) 155–161.

    130. [130]

      J.W. Lee, B. Kim, J.Y. Seo, et al., Appl. Surf. Sci. 610 (2023) 1–6.

    131. [131]

      K.A. Stoerzinger, R.R. Rao, X.R. Wang, et al., Chem 2 (2017) 668–675.

    132. [132]

      A.S. Koparal, E. Onder, U.B. Ogutveren, Desalination 197 (2006) 262–272.

    133. [133]

      X. Duan, C. Su, L. Zhou, et al., Appl. Catal. B: Environ. 194 (2016) 7–15.

    134. [134]

      J. Chen, Y. Xia, Q. Dai, Electrochim. Acta 165 (2015) 277–287.

    135. [135]

      A. Vlyssides, P. Karlis, M. Loizidou, A. Zorpas, D. Arapoglou, Environ. Technol. 22 (2001) 1467–1476.

    136. [136]

      2 B. Zhou, Z. Yu, Q. Wei, et al., Appl. Surf. Sci. (2016) 406–415.

    137. [137]

      R.A. Alvarez-Puebla, J.J. Garrido, Chemosphere 59 (2005) 659–667.

    138. [138]

      M. Laura Pinedo, B.D. Riascos, X.E. Quintero, C. Costa, Waste Manag. 144 (2022) 163–172.

    139. [139]

      T.J. Manning, T. Bennett, D. Milton, Sci. Total Environ. 257 (2000) 171–176.

    140. [140]

      F. de Souza, S.R. Braganca, Mater. Res. 21 (2018) 0759–0766.

    141. [141]

      A. Anglada, A.M. Urtiaga, I. Ortiz, J. Hazard. Mater. 181 (2010) 729–735.

    142. [142]

      D. Sun, X. Hong, Z. Cui, et al., J. Hazard. Mater. 388 (2020) 121768.

    143. [143]

      H.A. Gasteiger, N. Marković, P.N. Ross, E.J. Cairns, J. Electrochem. Soc. 141 (1994) 1795–1803.  doi: 10.1149/1.2055007

    144. [144]

      X. Liu, Z. He, Sci. Total Environ. 730 (2020) 139171.

    145. [145]

      N. Ambauen, C. Weber, J. Muff, C. Halle, T. Meyn, J. Appl. Electrochem. 50 (2020) 1175–1188.  doi: 10.1007/s10800-020-01476-3

  • 加载中
    1. [1]

      Cheng WangLi ZhouZhenghao FeiYanqing WangYukou Du . Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction. Chinese Chemical Letters, 2025, 36(12): 111746-. doi: 10.1016/j.cclet.2025.111746

    2. [2]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    3. [3]

      Sijia ZhouTianyi ZhouYuhua HouWang LiYanfei ShenSongqin LiuKaiqing WuYuanjian Zhang . Recent advances in electrochemiluminescence based on polymeric luminophores. Chinese Chemical Letters, 2025, 36(5): 110284-. doi: 10.1016/j.cclet.2024.110284

    4. [4]

      Xinjuan HeZishuo WangBoyang WangYongqiang ZhangXiaokai XuHuijuan CaiSiyu Lu . Recent advances in carbon dots imaging at the subcellular level: Synthesis strategies, properties, and organelle imaging. Chinese Chemical Letters, 2026, 37(2): 111957-. doi: 10.1016/j.cclet.2025.111957

    5. [5]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    6. [6]

      Dayang XieQiannan CaoHuapan FangYanhui LiHuayu Tian . Applications and challenges of biomedical polymer materials in pulmonary diseases. Chinese Chemical Letters, 2026, 37(2): 111032-. doi: 10.1016/j.cclet.2025.111032

    7. [7]

      Jie LiMengyun HuTianpeng LiuXin WangJun YuChangqing YeYukou Du . Amorphous PdSe/crystalline Pt heterostructure enhances polyhydric alcohols electrooxidation. Chinese Chemical Letters, 2026, 37(2): 110828-. doi: 10.1016/j.cclet.2025.110828

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    10. [10]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    11. [11]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    12. [12]

      Xiaolong LiChangjiang LiChaopeng ShiJiarun WangBei YanXianjin XiaoTongbo Wu . CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects. Chinese Chemical Letters, 2025, 36(7): 110507-. doi: 10.1016/j.cclet.2024.110507

    13. [13]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    14. [14]

      Xiaolu LiuSuhua WangXiangke Wang . Challenges of porous nanomaterials in highly efficient elimination of pollutants from aqueous solution. Chinese Chemical Letters, 2025, 36(9): 110679-. doi: 10.1016/j.cclet.2024.110679

    15. [15]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    16. [16]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    17. [17]

      Jinlv Wei Jianlong Zhang Huan Wen Zhixiang Zhai Fangyuan Guan Zelong Sun Jia Wu Shibin Yin . Tuning the eg∗ band broadening of the in-situ NiOOH by W doping for efficient biomass electrooxidation. Chinese Journal of Structural Chemistry, 2025, 44(5): 100541-100541. doi: 10.1016/j.cjsc.2025.100541

    18. [18]

      Shuaiqin Huang Huan Wen Shuyi Zheng Zelong Sun Junxin Chen Zhangyue Zheng Jia Wu Shibin Yin . Unveiling the dynamic reconstruction mechanism of NiMo alloy for enhanced 5-hydroxymethylfurfural electrooxidation. Chinese Journal of Structural Chemistry, 2025, 44(11): 100697-100697. doi: 10.1016/j.cjsc.2025.100697

    19. [19]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    20. [20]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

Metrics
  • PDF Downloads(0)
  • Abstract views(990)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return