Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review
-
* Corresponding author.
E-mail address: shenzhurui@nankai.edu.cn (Z. Shen).
Citation:
Yicheng Li, Qian Liu, Tianhao Li, Hao Bi, Zhurui Shen. Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review[J]. Chinese Chemical Letters,
;2025, 36(9): 110698.
doi:
10.1016/j.cclet.2024.110698
R.A. Barreto, Fossil fuels, Econ. Model. 75 (2018) 196–220.
doi: 10.1016/j.econmod.2018.06.019
D. Gielen, F. Boshell, D. Saygin, et al., Energy Strategy Rev. 24 (2019) 38–50.
doi: 10.1016/j.esr.2019.01.006
S.A. Neves, A.C. Marques, Res. Transp. Econ. 90 (2021) 101036.
doi: 10.1016/j.retrec.2021.101036
R. Li, H. Lee, Renew. Energy 189 (2022) 435–443.
doi: 10.1016/j.renene.2022.03.011
A. Rehman, M. Radulescu, L.M. Cismas, et al., Energies. 15 (2022) 7180.
doi: 10.3390/en15197180
M.R. Hossain, S. Singh, G.D. Sharma, S.A. Apostu, P. Bansal, Energy Policy 174 (2023) 113469.
doi: 10.1016/j.enpol.2023.113469
Y. Liu, H. Tang, A. Muhammad, G. Huang, Greenh. Gases 9 (2019) 160–174.
doi: 10.1002/ghg.1848
Y. Sun, Y. Jiang, H. Wei, et al., Nano Today 57 (2024) 102378.
doi: 10.1016/j.nantod.2024.102378
Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, J. Hazard. Mater. 395 (2020) 122599.
doi: 10.1016/j.jhazmat.2020.122599
X. Li, W. Wang, F. Dong, et al., ACS Catal. 11 (2021) 4739–4769.
doi: 10.1021/acscatal.0c05354
H. Wang, X. Li, X. Zhao, et al., Chinese J. Catal. 43 (2022) 178–214.
doi: 10.1016/S1872-2067(21)63910-4
N. Liu, Z. Sun, H. Zhang, et al., Sci. Total Environ. 875 (2023) 162603.
doi: 10.1016/j.scitotenv.2023.162603
M. Zeng, Y. Li, M. Mao, et al., ACS Catal. 5 (2015) 3278–3286.
doi: 10.1021/acscatal.5b00292
W. Qian, Z. Wu, Y. Jia, et al., Electrochem. Commun. 81 (2017) 124–127.
doi: 10.1016/j.elecom.2017.06.017
Y. Bai, J. Zhao, S. Feng, X. Liang, C. Wang, ChemComm 55 (2019) 4651–4654.
doi: 10.1039/c9cc01479a
Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 13 (2020) 4564–4582.
doi: 10.1039/d0ee02577a
A. Mahmood, W. Guo, H. Tabassum, R. Zou, Adv. Energy Mater. 6 (2016) 1600423.
doi: 10.1002/aenm.201600423
L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Adv. Energy Mater. 10 (2020) 2003018.
doi: 10.1002/aenm.202003018
Z. Pu, T. Liu, I.S. Amiinu, et al., Adv. Funct. Mater. 30 (2020) 2004009.
doi: 10.1002/adfm.202004009
S. Sarkar, A. Biswas, E.E. Siddharthan, R. Thapa, R.S. Dey, ACS Nano 16 (2022) 7890–7903.
doi: 10.1021/acsnano.2c00547
K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Renew. Sustain. Energy Rev. 76 (2017) 1485–1496.
doi: 10.1016/j.rser.2016.11.184
J. Filer, H.H. Ding, S. Chang, Water. 11 (2019) 921.
doi: 10.3390/w11050921
S. Manikandan, S. Vickram, R. Sirohi, et al., Bioresour. Technol. 372 (2023) 128679.
doi: 10.1016/j.biortech.2023.128679
S. Kattel, W. Yu, X. Yang, et al., Angew. Chem. Int. Ed. 55 (2016) 7968–7973.
doi: 10.1002/anie.201601661
J.C. Vedrine, Catalysts 7 (2017) 341.
doi: 10.3390/catal7110341
J.S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 8 (2018) 1702774.
doi: 10.1002/aenm.201702774
R. Lang, X. Du, Y. Huang, et al., Chem. Rev. 120 (2020) 11986–12043.
doi: 10.1021/acs.chemrev.0c00797
Y. Li, Y. Zhang, K. Qian, W. Huang, ACS Catal. 12 (2022) 1268–1287.
doi: 10.1021/acscatal.1c04854
X. Chen, H. Wang, W. An, L. Liu, W. Cui, Prog. Chem. 34 (2022) 2361–2372.
H. Wu, D. Zhang, B.X. Lei, Z.Q. Liu, ChemPlusChem 87 (2022) e202200097.
doi: 10.1002/cplu.202200097
S.E. Jun, J.K. Lee, S. Ryu, H.W. Jang, ChemCatChem 15 (2023) e202300926.
doi: 10.1002/cctc.202300926
J. Huang, L. Zou, S. Wang, et al., J. Solid State Chem. 336 (2024) 124779.
doi: 10.1016/j.jssc.2024.124779
Y. You, S. Huang, M. Chen, K.M. Parker, Z. He, J. Hazard. Mater. 424 (2022) 127376.
doi: 10.1016/j.jhazmat.2021.127376
Q. Cheng, M. Huang, L. Xiao, et al., ACS Catal. 13 (2023) 4021–4029.
doi: 10.1021/acscatal.2c06228
W. Du, Y. Wu, Z. Nie, X. Su, T. Zuo, Rare Metal Mater. Eng. 35 (2006) 1345–1349.
S. Zhang, S.E. Saji, Z. Yin, et al., Adv. Mater. 33 (2021) 2005988.
doi: 10.1002/adma.202005988
Y. Zhong, X. Qian, C. Ma, K. Liu, H. Zhang, Acta Chim. Sin. 81 (2023) 1624–1632.
doi: 10.6023/a23070323
H. Xue, G. Lv, L. Wang, T.A. Zhang, Miner. Eng. 215 (2024) 108796.
doi: 10.1016/j.mineng.2024.108796
Y. Zhang, M. Yang, Y.X. Gao, F. Wang, X. Huang, Sci. China Chem. 46 (2003) 252–258.
doi: 10.1007/BF02883045
A. Witkowska, B. Padlyak, J. Rybicki, Opt. Mater. 30 (2008) 699–702.
doi: 10.1016/j.optmat.2007.02.013
J. Hao, K. Zhang, P. Ren, et al., J. Alloys Compd. 814 (2020) 152339.
doi: 10.1016/j.jallcom.2019.152339
A.U. Hasanah, P.L. Gareso, N. Rauf, D. Tahir, Chembioeng. Rev. 10 (2023) 698–710.
doi: 10.1002/cben.202300004
S.L. Liu, L.Y. Xu, S.J. Xie, Q.X. Wang, G.X. Xiong, Appl. Catal. A 211 (2001) 145–152.
doi: 10.1016/S0926-860X(00)00865-6
Z. Hou, W. Pei, X. Zhang, et al., J. Rare Earths 38 (2020) 819–839.
doi: 10.1016/j.jre.2020.01.011
J. Feng, X. Zhang, J. Wang, et al., Catal. Sci. Technol. 11 (2021) 6330–6343.
doi: 10.1039/d1cy01156a
W. Judge, K. Ng, G. Moldoveanu, et al., Hydrometallurgy 218 (2023) 106054.
doi: 10.1016/j.hydromet.2023.106054
G. Moldoveanu, G. Kolliopoulos, W. Judge, et al., Hydrometallurgy 223 (2024) 106194.
doi: 10.1016/j.hydromet.2023.106194
Y. Jiang, H. Fu, Z. Liang, et al., Chem. Soc. Rev. 53 (2024) 714–763.
doi: 10.1039/d3cs00708a
X. Wang, J. Wang, P. Wang, et al., Adv. Mater. 34 (2022) 2206540.
doi: 10.1002/adma.202206540
Y. Zhu, X. Wang, X. Zhu, et al., Small. 19 (2023) 2206531.
doi: 10.1002/smll.202206531
C. Fan, X. Wang, X. Wu, et al., Adv. Energy Mater. 13 (2023) 2203244.
doi: 10.1002/aenm.202203244
R. Zhao, Z. Chen, Q. Li, et al., Chem. Catal. 2 (2022) 3590–3606.
O. Malta, J. Non-Cryst. Solids 354 (2008) 4770–4776.
doi: 10.1016/j.jnoncrysol.2008.04.023
A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Chem. Soc. Rev. 50 (2021) 9817–9844.
doi: 10.1039/d1cs00330e
S. Li, L. Xia, J. Li, et al., Energy Environ. Mater. 7 (2024) e12560.
doi: 10.1002/eem2.12560
L. Li, S. Liu, L. Ying, et al., Int. J. Hydrogen Energy 85 (2024) 818–831.
doi: 10.1016/j.ijhydene.2024.08.364
J. Liu, P. Li, J. Bi, et al., J. Am. Chem. Soc. 145 (2023) 23037–23047.
doi: 10.1021/jacs.3c05562
S. Chen, Z. Zheng, Q. Li, et al., J. Mater. Chem. A. 11 (2023) 1944–1953.
doi: 10.1039/d2ta06801j
Y. Song, Z. Han, K. Song, T. Zhen, Front. Pharmacol. 11 (2020) 491.
doi: 10.3389/fphar.2020.00491
H. Xi, T. Li, Sci. Total Environ. 954 (2024) 176261.
doi: 10.1016/j.scitotenv.2024.176261
J.Q. Jiang, N.J.D. Graham, Water SA 24 (1998) 237–244.
N. Tambo, T. Kamei, Water Sci. Technol. 37 (1998) 31–41.
doi: 10.2166/wst.1998.0371
Y. Gan, C. Ding, B. Xu, et al., J. Hazard. Mater. 442, (2023) 130072.
doi: 10.1016/j.jhazmat.2022.130072
G.W. Kajjumba, E.J. Marti, Chemosphere 309 (2022) 136462.
doi: 10.1016/j.chemosphere.2022.136462
O. Tünay, Water Sci. Technol. 48 (2003) 43–52.
V.V. Samonin, M.L. Podvyaznikov, V.N. Solov'ev, et al., Russ. J. Appl. Chem. 86 (2013) 1220–1224.
doi: 10.1134/S1070427213080119
T. Zhou, S. Song, R. Min, X. Liu, G. Zhang, Mar. Pollut. Bull. 201 (2024) 116202.
doi: 10.1016/j.marpolbul.2024.116202
Y. Bai, H. Chen, H. Cheng, et al., Sep. Purif. Technol. 341 (2024) 126956.
doi: 10.1016/j.seppur.2024.126956
J. Wang, X. Guo, J. Hazard. Mater. 390 (2020) 122156.
doi: 10.1016/j.jhazmat.2020.122156
P.F. Pinheiro do Nascimento, E.L. de Barros Neto, J.F. de Sousa, et al., Chem. Eng. Echnol. 44 (2021) 2199–2209.
doi: 10.1002/ceat.202100295
Y. Zhang, W. Zhang, H. Zhang, D. He, Molecules, 28 (2023) 3231.
doi: 10.3390/molecules28073231
L. Ma, X. Dong, M. Chen, et al., Membranes, 7 (2017) 16.
doi: 10.3390/membranes7010016
M. Zhou, J. Chen, S. Yu, et al., Chem. Eng. J. 451, (2023) 139009.
doi: 10.1016/j.cej.2022.139009
P.D. Sutrisna, K.A. Kurnia, U.W.R. Siagian, S. Ismadji, I.G. Wenten, J. Environ. Chem. Eng. 10 (2022) 107532.
doi: 10.1016/j.jece.2022.107532
L. Li, M. Ye, X. Gan, T. Xiao, Z. Zhu, Desalination Water Treat. 304 (2023) 36–46.
doi: 10.5004/dwt.2023.29788
C. Comninellis, A. Kapalka, S. Malato, et al., J. Chem. Technol. Biotechnol. 83 (2008) 769–776.
doi: 10.1002/jctb.1873
K. Guo, Z. Wu, C. Chen, et al., Acc. Chem. Res. 55, (2022) 286–297.
doi: 10.1021/acs.accounts.1c00269
M.P. Rayaroth, C.T. Aravindakumar, N.S. Shah, et al., Chem. Eng. J. 430 (2022) 133002.
doi: 10.1016/j.cej.2021.133002
J.Y. Hu, Z.S. Wang, W.J. Ng, S.L. Ong, Water Res. 33 (1999) 2587–2592.
doi: 10.1016/S0043-1354(98)00482-5
Fahmi, W. Nishijima, M. Okada, J. Water Supply Res. Technol. 52 (2003) 291–297.
doi: 10.2166/aqua.2003.0027
E. Nazlabadi, E.K. Niaragh, M.R.A. Moghaddam, Desalination Water Treat. 228 (2021) 92–120.
doi: 10.5004/dwt.2021.27315
J. Chen, J. Wan, C. Li, Y. Wei, H. Shi, J. Hazard. Mater. 437 (2022) 129393.
doi: 10.1016/j.jhazmat.2022.129393
W. Pei, Y. Wang, Y. Liu, et al., Sep. Purif. Technol. 344 (2024) 127157.
doi: 10.1016/j.seppur.2024.127157
W. Zhao, G. Wang, P. Li, et al., ACS ES & T Water. 4 (2024) 1411–1421.
doi: 10.1021/acsestwater.3c00575
A. Wuorimaa, R. Jokela, R. Aksela, Nord. Pulp Paper Res. J. 21 (2006) 435–443.
doi: 10.3183/npprj-2006-21-04-p435-443
L. Ji, J. Liu, C. Qian, X. Chen, Chin. J. Org. Chem. 32 (2012) 254–265.
doi: 10.6023/cjoc1103243
L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, Sci. Bull. 60 (2015) 55–64.
doi: 10.1007/s11434-014-0694-7
Q. Ma, Y. Xue, J. Guo, X. Peng, Catalysts. 13 (2023) 21.
S.C. Perry, S. Mavrikis, L. Wang, C.P. de Leon, Curr. Opin. Electrochem. 30 (2021) 100792.
doi: 10.1016/j.coelec.2021.100792
P.J. Espinoza-Montero, P. Alulema-Pullupaxi, B.A. Frontana-Uribe, C.E. Barrera-Diaz, Curr. Opin. Solid State Mater. Sci. 26 (2022) 100988.
doi: 10.1016/j.cossms.2022.100988
X. Yan, W.W. Shi, X.Z. Wang, New Carbon Mater. 37 (2022) 223–235.
doi: 10.1007/978-3-030-94514-5_23
W. Peng, H. Tan, X. Liu, F. Hou, J. Liang, Energy Fuels. 37 (2023) 17863–17874.
doi: 10.1021/acs.energyfuels.3c02732
Y. Liu, B. Wei, L. Yang, et al., J. Environ. Chem. Eng. 12 (2024) 112972.
doi: 10.1016/j.jece.2024.112972
W. Yuan, J. Li, H. Yang, et al., J. Electroanal. Chem. 971 (2024) 118604.
doi: 10.1016/j.jelechem.2024.118604
M. Cheng, Z. Li, T. Xu, et al., Electrochim. Acta. 430 (2022) 141091.
doi: 10.1016/j.electacta.2022.141091
I. Hota, A.K. Debnath, K.P. Muthe, K.S.K. Varadwaj, P. Parhi, Electroanalysis 32 (2020) 2521–2527.
doi: 10.1002/elan.202060099
P. Chen, J. Jia, Z. Cheng, et al., Arab. J. Chem. 17 (2024) 105624.
doi: 10.1016/j.arabjc.2024.105624
K. Song, H. Zhang, Z. Lin, et al., Adv. Funct. Mater. 34 (2024) 2312672.
doi: 10.1002/adfm.202312672
T.X. Huang, X. Cong, S.S. Wu, et al., Nat. Catal. 7 (2024) 1–9.
doi: 10.5194/agile-giss-5-29-2024
Y. Zhu, Q. Lin, Y. Zhong, et al., Energy Environ. Sci. 13 (2020) 3361–3392.
doi: 10.1039/d0ee02485f
Y. Ji, J. Liu, S. Hao, et al., Inorg. Chem. Front. 7 (2020) 2533–2537.
doi: 10.1039/d0qi00437e
Y. Jiang, Z. Liang, H. Fu, et al., J. Am. Chem. Soc. 146 (2024) 9012–9025.
doi: 10.1021/jacs.3c13367
D. Ghosh, D.J.L. Pradhan, Langmuir. 39 (2023) 3358–3370.
doi: 10.1021/acs.langmuir.2c03242
Y. Zhang, W. Liao, G. Zhang, J. Power Sources 512 (2021) 230514.
doi: 10.1016/j.jpowsour.2021.230514
X. Du, Y. Ding, X. Zhang, Appl. Surf. Sci. 562 (2021) 150227.
doi: 10.1016/j.apsusc.2021.150227
S. Shibli, M.A. Sha, J. Alloys Compd. 749 (2018) 250–261.
doi: 10.1016/j.jallcom.2018.03.274
C. Li, P. Wang, M. He, et al., Coord. Chem. Rev. 489 (2023) 215204.
doi: 10.1016/j.ccr.2023.215204
W. Zhang, A. Yu, H. Mao, et al., J. Am. Chem. Soc. 146 (2024) 21335–21347.
doi: 10.1021/jacs.4c02786
Q. Zhang, Y. Chen, S. Yan, et al., Energy Environ. Sci. 17 (2024) 2309–2314.
doi: 10.1039/d4ee00087k
D. Li, K. Yang, J. Lian, J. Yan, S. Liu, Adv. Energy Mater. 12 (2022) 2201070.
doi: 10.1002/aenm.202201070
P.P. Yang, M.R. Gao, Chem. Soc. Rev. 52 (2023) 4343–4380.
doi: 10.1039/d2cs00849a
I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, J. CO2 Util. 34 (2019) 20–33.
L. Song, Z. Liang, M. Sun, B. Huang, Y.J.E. Du, Energy Environ. Sci. 15 (2022) 3494–3502.
doi: 10.1039/d2ee01710e
L. Xue, C. Zhang, J. Wu, et al., Appl. Catal. B 304 (2022) 120951.
doi: 10.1016/j.apcatb.2021.120951
X. Yan, C. Chen, Y. Wu, et al., Chem. Sci. 12 (2021) 6638–6645.
doi: 10.1039/d1sc01117k
R. Yu, C. Qiu, Z. Lin, et al., ACS Mater. Lett. 4 (2022) 1749–1755.
doi: 10.1021/acsmaterialslett.2c00512
J. Feng, L. Wu, S. Liu, et al., J. Am. Chem. Soc. 145 (2023) 9857–9866.
doi: 10.1021/jacs.3c02428
X. Ren, Y. Gao, L. Zheng, et al., Surf. 23 (2021) 100923.
R. Schlögl, Angew. Chem. Int. Ed. 42 (2003) 2004–2008.
doi: 10.1002/anie.200301553
H.P. Jia, E.A. Quadrelli, Chem. Soc. Rev. 43 (2014) 547–564.
doi: 10.1039/C3CS60206K
C.J. Van der Ham, M.T. Koper, D.G. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183–5191.
doi: 10.1039/C4CS00085D
X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater., Chem. Soc. Rev. 8 (2018) 1800369.
doi: 10.1002/aenm.201800369
X. Chen, N. Li, Z. Kong, W.J. Ong, X. Zhao, Mater. Horiz. 5 (2018) 9–27.
doi: 10.1039/C7MH00557A
T. Xu, J. Liang, S. Li, et al., A.M.J.S.S. Asiri, Small Sci. 1 (2021) 2000069.
C. Lv, C. Yan, G. Chen, et al., Angew. Chem. Int. Ed. 130 (2018) 6181–6184.
doi: 10.1002/ange.201801538
B. Xu, Z. Liu, W. Qiu, et al., Electrochim. Acta, 298 (2019) 106–111.
doi: 10.1016/j.electacta.2018.12.084
X. Li, L. Li, X. Ren, et al., Ind. Eng. Chem. Res. 57 (2018) 16622–16627.
doi: 10.1021/acs.iecr.8b04045
B. Xu, L. Xia, F. Zhou, et al., ACS Sustain. Chem. Eng. 7 (2019) 2889–2893.
doi: 10.1021/acssuschemeng.8b05007
G. Liu, Z. Cui, M. Han, et al., Chem. Eur. J. 25 (2019) 5904–5911.
doi: 10.1002/chem.201806377
G.S. Handelman, H.K. Kok, R.V. Chandra, et al., J. Intern. Med. 284 (2018) 603–619.
doi: 10.1111/joim.12822
T.U. Rehman, M.S. Mahmud, Y.K. Chang, J. Jin, J. Shin, Comput. Electron. Agric. 156 (2019) 585–605.
doi: 10.1016/j.compag.2018.12.006
T. Jiang, J.L. Gradus, A.J. Rosellini, Behav. Ther. 51 (2020) 675–687.
doi: 10.1016/j.beth.2020.05.002
A. Boehnlein, M. Diefenthaler, N. Sato, et al., Rev. Mod. Phys. 94 (2022) 031003.
doi: 10.1103/RevModPhys.94.031003
J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, Nat. Rev. Mol. Cell Biol, 23 (2022) 40–55.
doi: 10.1038/s41580-021-00407-0
C. Zhou, C. Chen, P. Hu, H. Wang, J. Am. Chem. Soc. 145 (2023) 21897–21903.
doi: 10.1021/jacs.3c06166
M.H. Du, Y. Dai, L.P. Jiang, et al., J. Am. Chem. Soc. 145 (2023) 23188–23195.
doi: 10.1021/jacs.3c07635
A. Mikolajczyk, E. Wyrzykowska, P. Mazierski, A. Zaleska-Medynska, T. Puzyn, J. Nadolna, Appl. Catal. B 346 (2024) 123744.
doi: 10.1016/j.apcatb.2024.123744
M. Sun, T. Wu, A.W. Dougherty, et al., Adv. Energy Mater. 11 (2021) 2003796.
doi: 10.1002/aenm.202003796
Shanru Feng , Ling Wen , Li Zhang , Qinyu Jiang , Bozhao Zhang , Guohao Wu , Yue Wu , Jiabin Chen , Youcai Han , Chuhao Liu , Yu-Wu Zhong , Jiannian Yao . Magnetic field controlled electrocatalysis from a multidimensional catalytic perspective: Mechanisms, applications, and prospects for energy conversion. Chinese Journal of Structural Chemistry, 2025, 44(11): 100662-100662. doi: 10.1016/j.cjsc.2025.100662
Han-Bin Liu , Xiaoyu Cheng , Zhou Guo , Juan Yang , Fuwen Tan , Donghui Lan , Jian-Ping Tan , Bing Yi , Weixin Zhai , Qing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149
Qingbai Tian , BingLiang Yu , Zhihao Li , Wei Hong , Qian Li , Xing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Lu Li , Jianing Shen , Qinkun Xiao , Chaozheng He , Jinzhou Zheng , Chaoqin Chu , Chen Chen . Stable crystal structure prediction using machine learning-based formation energy and empirical potential function. Chinese Chemical Letters, 2025, 36(11): 110421-. doi: 10.1016/j.cclet.2024.110421
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Honglin Chen , Rupeng Wang , Zixiang He , Shih-Hsin Ho . Data-driven insights into nonradical activation mechanisms for biochar inverse design: A synergistic approach using DFT and machine learning with meta-analysis. Chinese Chemical Letters, 2026, 37(2): 111372-. doi: 10.1016/j.cclet.2025.111372
Zonglin Li , Shihua Zou , Zining Wang , Georgeta Postole , Liang Hu , Hongying Zhao . Machine learning in electrochemical oxidation process: A mini-review. Chinese Chemical Letters, 2025, 36(8): 110526-. doi: 10.1016/j.cclet.2024.110526
Yunzhe Zheng , Si Sun , Jiali Liu , Qingyu Zhao , Heng Zhang , Jing Zhang , Peng Zhou , Zhaokun Xiong , Chuan-Shu He , Bo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
Xu He , Wenjie Gao , Jinglei Xu , Zhanjun Cheng , Wenchao Peng , Beibei Yan , Guanyi Chen , Ning Li . Machine learning-assisted construction of C=O and pyridinic N active sites in sludge-based catalysts. Chinese Chemical Letters, 2025, 36(12): 111019-. doi: 10.1016/j.cclet.2025.111019
Shuang Li , Penghui Yuan , Xinyi Zhang , Meiru Liu , Dezhi Yang , Linglei Kong , Li Zhang , Yang Lu , Guanhua Du . Revolutionizing sepsis therapy: Machine learning-driven co-crystallization reveals emodin's therapeutic potential. Chinese Chemical Letters, 2026, 37(2): 111289-. doi: 10.1016/j.cclet.2025.111289
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Sumiya Akter Dristy , Md Ahasan Habib , Mehedi Hasan Joni , Md Najibullah , Rutuja Mandavkar , Shusen Lin , Jihoon Lee . Binder-free bimetallic vanadium-nickel-boride-phosphide spherical structure for highly efficient and stable industrial-level water splitting. Chinese Journal of Structural Chemistry, 2025, 44(12): 100747-100747. doi: 10.1016/j.cjsc.2025.100747
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Jieyu Liu , Junze Zhang , Haigang Deng , Shuoao Wang , Xingxing Jiang , Li Wang , Changhong Wang . Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning. Chinese Chemical Letters, 2025, 36(12): 110656-. doi: 10.1016/j.cclet.2024.110656