Citation: Zeyin Chen, Jiaju Shi, Yusheng Zhou, Peng Zhang, Guodong Liang. Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis[J]. Chinese Chemical Letters, ;2025, 36(5): 110629. doi: 10.1016/j.cclet.2024.110629 shu

Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis

    * Corresponding author.
    E-mail addresses: lgdong@mail.sysu.edu.cn (G. Liang).
  • Received Date: 4 September 2024
    Revised Date: 6 November 2024
    Accepted Date: 8 November 2024
    Available Online: 9 November 2024

Figures(4)

  • Room-temperature phosphorescence (RTP) materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption, anti-counterfeiting, and sensing. However, most polymers exhibit a short RTP lifetime (<1 s) because of their unstable triplet excitons. Herein, a new strategy of polymer chain stabilized phosphorescence (PCSP), which yields a new kind of RTP polymers with an ultralong lifetime and a sensitive oxygen response, has been reported. The rigid polymer chains of poly(methyl mathacrylate) (PMMA) immobilize the emitter molecules through multiple interactions between them, giving rise to efficient RTP. Meanwhile, the loosely-packed amorphous polymer chains allow oxygen to diffuse inside, endowing the doped polymers with oxygen sensitivity. Flexible and transparent polymer films exhibited an impressive ultralong RTP lifetime of 2.57 s at room temperature in vacuum, which was among the best performance of PMMA. Intriguingly, their RTP was rapidly quenched in the presence of oxygen. Furthermore, RTP microparticles with a diameter of 1.63 µm were synthesized using in situ dispersion polymerization technique. Finally, oxygen sensors for quick, visual, and quantitative oxygen detection were developed based on the RTP microparticles through phosphorescence lifetime and image analysis. With distinctive advantages such as an ultralong lifetime, oxygen sensitivity, ease of fabrication, and cost-effectiveness, PCSP opens a new avenue to sensitive materials for oxygen detection.
  • 加载中
    1. [1]

      J.Z. Zhao, W.H. Wu, J.F. Sun, S. Guo, Chem. Soc. Rev. 42 (2013) 5323–5351.  doi: 10.1039/c3cs35531d

    2. [2]

      X.D. Wang, O.S. Wolfbeis, Chem. Soc. Rev. 43 (2014) 3666–3761.

    3. [3]

      Y.C. Yu, M.S. Kwon, J. Jung, et al., Angew. Chem. Int. Ed. 56 (2017) 16207–16211.  doi: 10.1002/anie.201708606

    4. [4]

      Y. Zhou, W. Qin, C. Du, et al., Angew. Chem. Int. Ed. 58 (2019) 12102–12106.  doi: 10.1002/anie.201906312

    5. [5]

      R.Y. Xu, Y.F. Wang, X.P. Duan, et al., J. Am. Chem. Soc. 138 (2016) 2158–2161.  doi: 10.1021/jacs.5b13458

    6. [6]

      E. Roussakis, Z.X. Li, A.J. Nichols, C.L. Evans, Angew. Chem. Int. Ed. 54 (2015) 8340–8362.  doi: 10.1002/anie.201410646

    7. [7]

      S.Y. Liu, D.D. Zhou, C.T. He, et al., Angew. Chem. Int. Ed. 55 (2016) 16021–16025.  doi: 10.1002/anie.201608439

    8. [8]

      J. Yang, M.M. Fang, Z. Li, Acc. Mater. Res. 2 (2021) 644–654.  doi: 10.1021/accountsmr.1c00084

    9. [9]

      H. Gao, X. Ma, Aggregate 2 (2021) e38.

    10. [10]

      B.B. Ding, X. Ma, H. Tian, Acc. Mater. Res. 4 (2023) 827–838.  doi: 10.1021/accountsmr.3c00090

    11. [11]

      W.B. Dai, Y.T. Jiang, Y.X. Lei, et al., Chem. Sci. 15 (2024) 4222–4237.  doi: 10.1039/d3sc06931a

    12. [12]

      Z.J. Song, Y. Shang, Q. Lou, et al., Adv. Mater. 35 (2023) 2207970.

    13. [13]

      Q. Lou, N. Chen, J.Y. Zhu, et al., Adv. Mater. 35 (2023) 2211858.

    14. [14]

      A.R. Huang, Y.Y. Fan, K. Wang, et al., Adv. Mater. 35 (2023) 2209166.

    15. [15]

      M.X. Gao, Y. Tian, X.N. Li, et al., Angew. Chem. Int. Ed. 62 (2022) e202214908.

    16. [16]

      J.Y. Zhou, D.P. Liu, L.Q. Li, et al., Chin. Chem. Lett. 35 (2024) 109929.

    17. [17]

      T.T. Wang, M. Liu, J.Y. Mao, et al., Chin. Chem. Lett. 35 (2024) 108385.

    18. [18]

      Y.F. Zhang, C.C. Xiong, W.B. Wang, et al., Aggregate 4 (2023) e310.

    19. [19]

      Y. Zhang, W. Zhang, J. Xia, et al., Angew. Chem. Int. Ed. 62 (2023) e202314273.

    20. [20]

      W. Qin, J. Ma, Y.S. Zhou, et al., Chem. Eng. J. 400 (2020) 125934.

    21. [21]

      J. Ma, Y.S. Zhou, H.Y. Gao, et al., Mater. Chem. Front. 5 (2021) 2261–2270.  doi: 10.1039/d1qm00023c

    22. [22]

      Y.J. Yang, J.Q. Wang, J. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202218994.

    23. [23]

      X.X. Liu, Q.Y. Liao, J. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202302792.

    24. [24]

      T.W. Zhu, T.J. Yang, Q. Zhang, W.Z. Yuan, Nat. Commun. 13 (2022) 2658.

    25. [25]

      S.X. Tang, Z.H. Zhao, J.Q. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202117368.

    26. [26]

      X.Y. Dou, T.W. Zhu, Z.S. Wang, et al., Adv. Mater. 32 (2020) 2004768.

    27. [27]

      X.P. Wang, J.B. Li, Y. Zeng, et al., Chem. Eng. J. 460 (2023) 141916.

    28. [28]

      G.M. Wang, J.Y. Li, X. Li, et al., Chem. Eng. J. 431 (2022) 134197.

    29. [29]

      G.M. Wang, X.F. Chen, X. Li, et al., Chem. Sci. 14 (2023) 8180–8186.  doi: 10.1039/d3sc01500a

    30. [30]

      X.H. Zhang, K.C. Chong, Z.L. Xie, B. Liu, Angew. Chem. Int. Ed. 62 (2023) e202310335.

    31. [31]

      K.C. Chong, C.J. Chen, C. Zhou, et al., Adv. Mater. 34 (2022) 2201569.

    32. [32]

      C.J. Chen, Z.G. Chi, K.C. Chong, et al., Nat. Mater. 20 (2021) 175–180.

    33. [33]

      T. Zhang, X. Ma, H.W. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 11206–11216.  doi: 10.1002/anie.201915433

    34. [34]

      X.Y. Yao, J. Wang, D.J. Jiao, et al., Adv. Mater. 55 (2020) 2005973.

    35. [35]

      Z.A. Yan, X.H. Lin, S.Y. Sun, et al., Angew. Chem. Int. Ed. 60 (2021) 19735–19739.  doi: 10.1002/anie.202108025

    36. [36]

      K.J. Chen, Y.F. Zhang, Y.X. Lei, et al., Nat. Commun. 15 (2024) 1269.

    37. [37]

      Y.H. Liang, C. Xu, H.Q. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202217616.

    38. [38]

      Y.H. Liang, P.T. Hu, H.Q. Zhang, et al., Angew. Chem. Int. Ed. 63 (2024) e202318516.

    39. [39]

      M.Y. Jian, Z.C. Song, X.J. Chen, et al., Chem. Eng. J. 429 (2022) 132346.

    40. [40]

      C. Qian, Z.M. Ma, X.H. Fu, et al., Adv. Mater. 34 (2022) 2200544.

    41. [41]

      H. Peng, G.Z. Xie, Y. Cao, et al., Sci. Adv. 8 (2022) eabk2925.

    42. [42]

      H. Li, J. Gu, Z.J. Wang, et al., Nat. Commun. 13 (2022) 429.  doi: 10.1007/s10489-021-02397-0

    43. [43]

      X. Yan, H. Peng, Y. Xiang, et al., Small 18 (2022) 202104073.

    44. [44]

      Z.H. Wang, L. Gao, Y. Zheng, et al., Angew. Chem. Int. Ed. 61 (2022) e202203254.

    45. [45]

      C. Wang, L.J. Qu, X.H. Chen, et al., Adv. Mater. 34 (2022) 2204415.

    46. [46]

      Y. Su, Y.F. Zhang, Z.H. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9967–9971.  doi: 10.1002/anie.201912102

    47. [47]

      J.J. Guo, C.L. Yang, Y.L. Zhao, Acc. Chem. Res. 55 (2022) 1160–1170.  doi: 10.1021/acs.accounts.2c00038

    48. [48]

      J.Q. Wang, Y.J. Yang, K.X. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202304020.

    49. [49]

      S.D. Xiong, Y. Xiong, D.L. Wang, et al., Adv. Mater. 35 (2023) 2301874.

    50. [50]

      K.Y. Chen, Y. Xiong, D.L. Wang, et al., Adv. Funct. Mater. 34 (2023) 2312883.

    51. [51]

      Y.S. Zhou, P. Zhang, Z. Liu, et al., Adv. Mater. 36 (2024) 202312439.

    52. [52]

      Y.S. Zhou, L.M. Jin, J.Q. Chen, et al., Chem. Eng. J. 463 (2023) 142506.

    53. [53]

      J.J. Shi, W.J. Tao, Y.S. Zhou, G.D. Liang, Chem. Eng. J. 475 (2023) 146178.

    54. [54]

      W.J. Tao, Y.S. Zhou, F.X. Lin, et al., Adv. Opt. Mater. 10 (2022) 202102449.

    55. [55]

      L. Zhang, F. Gu, P. Jiang, X. Ma, ACS Appl. Mater. Inter. 16 (2024) 42794–42801.  doi: 10.1021/acsami.4c10654

    56. [56]

      Y.Y. Zhao, J.H. Yang, C. Liang, et al., Angew. Chem. Int. Ed. 63 (2023) e202317431.

    57. [57]

      X. Zou, N. Gan, M.Y. Dong, et al., Adv. Mater. 35 (2023) 202210489.

    58. [58]

      J.J. Shi, Y.S. Zhou, W. Wang, et al., Chem. Eng. J. 492 (2024) 152419.

  • 加载中
    1. [1]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    2. [2]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    3. [3]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    4. [4]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    5. [5]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    6. [6]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    9. [9]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    11. [11]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    12. [12]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    13. [13]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    14. [14]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    15. [15]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    16. [16]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    17. [17]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    18. [18]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    19. [19]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    20. [20]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return