Citation: Xuanyang Jin, Xincheng Guo, Siyang Dong, Shilan Li, Shengdong Jin, Peng Xia, Shengjun Lu, Yufei Zhang, Haosen Fan. Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries[J]. Chinese Chemical Letters, ;2025, 36(7): 110604. doi: 10.1016/j.cclet.2024.110604 shu

Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries

    * Corresponding authors.
    E-mail addresses: sjlu@gzu.edu.cn (S. Lu), yfzhang@gdut.edu.cn (Y. Zhang), hsfan@gzhu.edu.cn (H. Fan).
  • Received Date: 24 September 2024
    Revised Date: 25 October 2024
    Accepted Date: 1 November 2024
    Available Online: 1 November 2024

Figures(5)

  • Lithium-sulfur batteries (LSBs) are considered as the most promising energy storage technologies owing to their large theoretical energy density (2500 Wh/kg) and specific capacity (1675 mAh/g). However, the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application. In this paper, cobalt-molybdenum bimetallic carbides heterostructure (Co6Mo6C2@Co@NC) was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process. The obtained dodecahedral Co6Mo6C2@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites, which speeds up the chemisorption and catalytic conversion of polysulfides, thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites. When applied as the LSBs separator modifier layer, the cell with modified separator present excellent rate capability and durable cycling stability. In particular, the cell with Co6Mo6C2@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C, with the coulombic efficiency (CE) near to 100%. Moreover, the Co6Mo6C2@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading (4.096 mg/cm2) at 0.5 C after 200 cycles. This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition.
  • 加载中
    1. [1]

      S.M. Wu, Y.N. Li, W. Yang, et al., J. Colloid Interface Sci. 678 (2025) 477–486.

    2. [2]

      J.N. Gu, Y.Z. Zhang, Y. Shi, et al., ACS. Nano 18 (2024) 25966–25985.

    3. [3]

      S.J. Lu, J.Y. Lin, C.H. Wang, et al., Rare Met. 43 (2024) 3713–3723.  doi: 10.1007/s12598-024-02650-8

    4. [4]

      B.Y. Qin, M.Q. Wang, Z.T. Liu, et al., J. Colloid Interface Sci. 646 (2023) 597–605.

    5. [5]

      L.T. Chen, Z.T. Liu, W. Yang, et al., J. Colloid Interface Sci. 666 (2024) 416–423.

    6. [6]

      H. Gu, W. Yue, J. Hu, et al., Adv. Energy Mater. 13 (2023) 2204014.

    7. [7]

      R. Sun, F. Xu, C.H. Wang, et al., Rare Met. 43 (2024) 1906–1931.  doi: 10.1007/s12598-023-02563-y

    8. [8]

      S. Ma, Q.L. Ruan, X.C. Liu, et al., Tungsten 6 (2023) 504–521.

    9. [9]

      Y.M. Li, Y.Z. Zuo, X. Li, et al., Nano Res. 17 (2024) 7153–7162.

    10. [10]

      Y. Zhang, Y. Cao, L. Fan, et al., Chem. Eng. J. 482 (2024) 148991.

    11. [11]

      H. Pan, Z. Tan, H. Zhou, et al., J. Energy Chem. 39 (2019) 101–108.

    12. [12]

      Q. Zhao, R. Wang, J. Wen, et al., Nano Energy 95 (2022) 106982.

    13. [13]

      Z. Shi, T. Wang, Z. Shi, et al., Chem. Eng. J. 457 (2023) 141264.

    14. [14]

      C. Ma, Y. Zhang, Y. Feng, et al., Adv. Mater. 33 (2021) 2100171.

    15. [15]

      X. Li, X. Yang, J. Ye, et al., Chem. Eng. J. 405 (2021) 126947.

    16. [16]

      M. Chen, M. Shao, J. Jin, L. Cui, H. Tu, X. Fu, Energy Storage Mater. 47 (2022) 629–648.

    17. [17]

      Z. Wei, N. Zhang, T. Feng, et al., Chem. Eng. J. 430 (2022) 132678.

    18. [18]

      Y. Xing, M. Zhang, J. Guo, et al., J. Solid State Chem. 316 (2022) 123642.

    19. [19]

      M. Tian, J. Zhao, H. Liu, et al., Sep. Purif. Technol. 300 (2022) 121684.

    20. [20]

      W. Yang, W. Yang, J. Feng, Z. Ma, G. Shao, Electrochim. Acta 210 (2016) 71–78.

    21. [21]

      Z. Chi, J. Ding, C. Ding, et al., ACS Appl. Mater. Interfaces 15 (2023) 39342–39350.  doi: 10.1021/acsami.3c07321

    22. [22]

      M.K. Bhattarai, B. Tripathi, S. Shweta, et al., APL Mater. 12 (2024) 051125.

    23. [23]

      J. Hao, Y. Pan, W. Chen, et al., J. Mater. Chem. A 7 (2019) 27247–27255.  doi: 10.1039/c9ta10301e

    24. [24]

      B. Tang, H. Wu, X. Du, et al., Small 16 (2020) 1905737.

    25. [25]

      J. Xiong, X.Y. Liu, P. Xia, et al., J. Colloid Interface Sci. 652 (2023) 1417–1426.

    26. [26]

      M. Rana, H.A. Al-Fayaad, B. Luo, et al., Nano Energy 75 (2020) 105009.

    27. [27]

      P.Y. Lee, L.Y. Lin, I.J. Hsu, et al., Electrochim. Acta 389 (2021) 138680.

    28. [28]

      Z. Wang, H. Jiang, C. Wei, et al., Adv. Funct. Mater. 34 (2024) 2315178.

    29. [29]

      S. Li, J. Liu, L. Ma, et al., Adv. Fiber Mater. 5 (2022) 252–265.  doi: 10.3390/bs12080252

    30. [30]

      Y. Wang, L. Zhu, J. Wang, et al., Chem. Eng. J. 433 (2022) 133792.

    31. [31]

      Y.N. Li, S.M. Wu, L.T. Chen, et al., Chin. Chem. Lett. 36 (2025) 110371.

    32. [32]

      Y.H. Liu, L.X. Li, A.Y. Wen, F.F. Cao, H. Ye, Energy Storage Mater. 55 (2023) 652–659.

    33. [33]

      S.M. Wu, Y.N. Li, L.T. Chen, et al., Chin. Chem. Lett. 36 (2025) 109796.

    34. [34]

      J. Wang, J. Li, J. Colloid Interface Sci. 584 (2021) 354–359.

    35. [35]

      F. Xu, S.L. Li, S.D. Jing, et al., J. Colloid Interface Sci. 660 (2024) 907–915.

    36. [36]

      S. Lin, J. Dong, R. Chen, et al., J. Alloys Compd. 965 (2023) 171389.

    37. [37]

      X.Y. Zhang, M.N. Lei, S. Tian, J.G. Wang, Rare Met. 43 (2023) 624–634.

    38. [38]

      L. Jin, J. Chen, Z. Fu, et al., Sustain. Mater. Technol. 35 (2023) e00571.

    39. [39]

      Q. Hao, X. Qian, L. Jin, et al., J. Alloys Compd. 967 (2023) 171605.

    40. [40]

      Y. Zhang, H. Yuan, E. Guo, et al., J. Energy Chem. 99 (2024) 604–614.  doi: 10.3390/atmos15050604

    41. [41]

      J. Shang, C. Ma, C. Zhang, et al., J. Energy Storage 82 (2024) 110552.

    42. [42]

      Y. Ning, X. Zeng, X. Peng, et al., J. Mater. Sci. Technol. 187 (2024) 15–27.

    43. [43]

      S. Deng, X. Shi, Y. Zhao, et al., Chem. Eng. J. 433 (2022) 133683.

    44. [44]

      Q. Liu, X. Wang, Y. Wei, et al., J. Alloys Compd. 934 (2023) 167861.

    45. [45]

      H. Xing, K. Zhang, R. Chang, Z. Wen, Y. Xu, J. Colloid Interface Sci. 677 (2025) 181–193.

    46. [46]

      Y. Yao, H. Wang, H. Yang, et al., Adv. Mater. 32 (2019) 1905658.

    47. [47]

      J. Zhao, Z. Yan, J. Alloys Compd. 856 (2021) 156609.

    48. [48]

      X. Qian, J. Cheng, Y. Wang, et al., Phys. Chem. Chem. Phys. 25 (2023) 5559–5568.  doi: 10.1039/d2cp05580e

    49. [49]

      L. Ni, J. Gu, X. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202306528.

    50. [50]

      P. Wan, S. Dong, J. Xiong, et al., J. Colloid Interface Sci. 650 (2023) 582–592.

    51. [51]

      X.C. Guo, P.F. Wan, P. Xia, et al., J. Colloid Interface Sci. 678 (2025) 393–406.

    52. [52]

      P.F. Wan, X.L. Peng, S.Y. Dong, et al., J. Colloid Interface Sci. 657 (2024) 757–766.

    53. [53]

      P. Xia, X.L. Peng, L. Yuan, et al., J. Colloid Interface Sci. 678 (2025) 619–629.

    54. [54]

      R. Sun, P. Xia, X. Guo, et al., Chem. Eng. J. 486 (2024) 150377.

    55. [55]

      N. Wu, J. Wang, C. Liao, et al., J. Alloys Compd. 910 (2022) 164919.

    56. [56]

      J. Zhang, Y. Wang, Z. Zhou, Q. Chen, Y. Tang, Materials 16 (2023) 1635.  doi: 10.3390/ma16041635

    57. [57]

      X. Liu, L. Yuan, X. Peng, et al., Chin. Chem. Lett. 36 (2025) 110369.

    58. [58]

      P. Xia, S.L. Li, L. Yuan, et al., J. Membr. Sci. 694 (2024) 122395.

    59. [59]

      J. Liu, Z. Chen, M. Liu, et al., J. Energy Storage 91 (2024) 111994.

  • 加载中
    1. [1]

      Shengdong JingXiaoli PengShilan LiLong YuanShengjun LuYufei ZhangHaosen Fan . Synergistic realization of fast polysulfide redox kinetics and stable lithium anode in Li-S battery from CoNi-MOF/MXene derived CoNi@TiO2/C heterostructure. Chinese Chemical Letters, 2025, 36(10): 110732-. doi: 10.1016/j.cclet.2024.110732

    2. [2]

      Ming XuTeng DengChenzhaosha LiHongyang ZhaoJuan WangYatao LiuJianan WangGuodong FengNa LiShujiang DingKai Xi . Oxygen deficient Eu2O3−δ synchronizes the shielding and catalytic conversion of polysulfides toward high-performance lithium sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110372-. doi: 10.1016/j.cclet.2024.110372

    3. [3]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    4. [4]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    5. [5]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    6. [6]

      Min ChenXinxin LiWeijie CaiXinxin HanChuancong ZhouKe ZhengRuomeng DuanYanfei ZhaoMengmeng ShaoWenlong WangKaihong ZhengBo FengXiaodong Shi . Conductive nanofabrics as multifunctional interlayer of sulfur-loading cathode towards durable lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(9): 110712-. doi: 10.1016/j.cclet.2024.110712

    7. [7]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    8. [8]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    9. [9]

      Yuxin LIAOXianheng SHENLi CHENYujia TIANZhihong LUOXiaoli CHENJiaojing SHAO . Amino-modified F-containing silica slag for the construction of multi-functional interlayer and the inhibitory effect on the polysulfide shuttle effect in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 375-386. doi: 10.11862/CJIC.20250213

    10. [10]

      Ying ZhaoYao HeJian-Xin YangWen-Jie LiuDan TianFrancisco AznarezLe-Le GongLi-Long DangLu-Fang Ma . Controllable self-assembly and photothermal conversion of metalla[2]catenanes induced by synergistic effect of free radicals and stacking interactions. Chinese Chemical Letters, 2025, 36(12): 111460-. doi: 10.1016/j.cclet.2025.111460

    11. [11]

      Qian WangDong YangWenxing XinYongqi WangWenchang HanWengxiang YanChunman YangFei WangYiyong ZhangZiyi ZhuXue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669

    12. [12]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    13. [13]

      Shuang WangXiaoqi FuShanshan Yao . Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials. Acta Physico-Chimica Sinica, 2026, 42(5): 100206-0. doi: 10.1016/j.actphy.2025.100206

    14. [14]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    15. [15]

      Haiyan WangHucheng ZhangLijing WangYonghui LiTianhao ZhangZhansheng LuHao JiangChunzhong LiJianji Wang . Ti3C2Tx MXene-mediating near- and long-range electronic effect on atomically dispersed Co for efficient lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110373-. doi: 10.1016/j.cclet.2024.110373

    16. [16]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    17. [17]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    18. [18]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    20. [20]

      Jinzhou ZhengChaozheng HeChenxu Zhao . Rational catalyst design for N2 electro-reduction: Regulation strategies and quick screen towards enhanced conversion efficiency. Chinese Chemical Letters, 2025, 36(7): 111056-. doi: 10.1016/j.cclet.2025.111056

Metrics
  • PDF Downloads(2)
  • Abstract views(1044)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return