Citation: Xuanyang Jin, Xincheng Guo, Siyang Dong, Shilan Li, Shengdong Jin, Peng Xia, Shengjun Lu, Yufei Zhang, Haosen Fan. Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries[J]. Chinese Chemical Letters, ;2025, 36(7): 110604. doi: 10.1016/j.cclet.2024.110604 shu

Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries

    * Corresponding authors.
    E-mail addresses: sjlu@gzu.edu.cn (S. Lu), yfzhang@gdut.edu.cn (Y. Zhang), hsfan@gzhu.edu.cn (H. Fan).
  • Received Date: 24 September 2024
    Revised Date: 25 October 2024
    Accepted Date: 1 November 2024
    Available Online: 1 November 2024

Figures(5)

  • Lithium-sulfur batteries (LSBs) are considered as the most promising energy storage technologies owing to their large theoretical energy density (2500 Wh/kg) and specific capacity (1675 mAh/g). However, the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application. In this paper, cobalt-molybdenum bimetallic carbides heterostructure (Co6Mo6C2@Co@NC) was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process. The obtained dodecahedral Co6Mo6C2@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites, which speeds up the chemisorption and catalytic conversion of polysulfides, thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites. When applied as the LSBs separator modifier layer, the cell with modified separator present excellent rate capability and durable cycling stability. In particular, the cell with Co6Mo6C2@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C, with the coulombic efficiency (CE) near to 100%. Moreover, the Co6Mo6C2@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading (4.096 mg/cm2) at 0.5 C after 200 cycles. This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition.
  • 加载中
    1. [1]

      S.M. Wu, Y.N. Li, W. Yang, et al., J. Colloid Interface Sci. 678 (2025) 477–486.

    2. [2]

      J.N. Gu, Y.Z. Zhang, Y. Shi, et al., ACS. Nano 18 (2024) 25966–25985.

    3. [3]

      S.J. Lu, J.Y. Lin, C.H. Wang, et al., Rare Met. 43 (2024) 3713–3723.  doi: 10.1007/s12598-024-02650-8

    4. [4]

      B.Y. Qin, M.Q. Wang, Z.T. Liu, et al., J. Colloid Interface Sci. 646 (2023) 597–605.

    5. [5]

      L.T. Chen, Z.T. Liu, W. Yang, et al., J. Colloid Interface Sci. 666 (2024) 416–423.

    6. [6]

      H. Gu, W. Yue, J. Hu, et al., Adv. Energy Mater. 13 (2023) 2204014.

    7. [7]

      R. Sun, F. Xu, C.H. Wang, et al., Rare Met. 43 (2024) 1906–1931.  doi: 10.1007/s12598-023-02563-y

    8. [8]

      S. Ma, Q.L. Ruan, X.C. Liu, et al., Tungsten 6 (2023) 504–521.

    9. [9]

      Y.M. Li, Y.Z. Zuo, X. Li, et al., Nano Res. 17 (2024) 7153–7162.

    10. [10]

      Y. Zhang, Y. Cao, L. Fan, et al., Chem. Eng. J. 482 (2024) 148991.

    11. [11]

      H. Pan, Z. Tan, H. Zhou, et al., J. Energy Chem. 39 (2019) 101–108.

    12. [12]

      Q. Zhao, R. Wang, J. Wen, et al., Nano Energy 95 (2022) 106982.

    13. [13]

      Z. Shi, T. Wang, Z. Shi, et al., Chem. Eng. J. 457 (2023) 141264.

    14. [14]

      C. Ma, Y. Zhang, Y. Feng, et al., Adv. Mater. 33 (2021) 2100171.

    15. [15]

      X. Li, X. Yang, J. Ye, et al., Chem. Eng. J. 405 (2021) 126947.

    16. [16]

      M. Chen, M. Shao, J. Jin, L. Cui, H. Tu, X. Fu, Energy Storage Mater. 47 (2022) 629–648.

    17. [17]

      Z. Wei, N. Zhang, T. Feng, et al., Chem. Eng. J. 430 (2022) 132678.

    18. [18]

      Y. Xing, M. Zhang, J. Guo, et al., J. Solid State Chem. 316 (2022) 123642.

    19. [19]

      M. Tian, J. Zhao, H. Liu, et al., Sep. Purif. Technol. 300 (2022) 121684.

    20. [20]

      W. Yang, W. Yang, J. Feng, Z. Ma, G. Shao, Electrochim. Acta 210 (2016) 71–78.

    21. [21]

      Z. Chi, J. Ding, C. Ding, et al., ACS Appl. Mater. Interfaces 15 (2023) 39342–39350.  doi: 10.1021/acsami.3c07321

    22. [22]

      M.K. Bhattarai, B. Tripathi, S. Shweta, et al., APL Mater. 12 (2024) 051125.

    23. [23]

      J. Hao, Y. Pan, W. Chen, et al., J. Mater. Chem. A 7 (2019) 27247–27255.  doi: 10.1039/c9ta10301e

    24. [24]

      B. Tang, H. Wu, X. Du, et al., Small 16 (2020) 1905737.

    25. [25]

      J. Xiong, X.Y. Liu, P. Xia, et al., J. Colloid Interface Sci. 652 (2023) 1417–1426.

    26. [26]

      M. Rana, H.A. Al-Fayaad, B. Luo, et al., Nano Energy 75 (2020) 105009.

    27. [27]

      P.Y. Lee, L.Y. Lin, I.J. Hsu, et al., Electrochim. Acta 389 (2021) 138680.

    28. [28]

      Z. Wang, H. Jiang, C. Wei, et al., Adv. Funct. Mater. 34 (2024) 2315178.

    29. [29]

      S. Li, J. Liu, L. Ma, et al., Adv. Fiber Mater. 5 (2022) 252–265.  doi: 10.3390/bs12080252

    30. [30]

      Y. Wang, L. Zhu, J. Wang, et al., Chem. Eng. J. 433 (2022) 133792.

    31. [31]

      Y.N. Li, S.M. Wu, L.T. Chen, et al., Chin. Chem. Lett. 36 (2025) 110371.

    32. [32]

      Y.H. Liu, L.X. Li, A.Y. Wen, F.F. Cao, H. Ye, Energy Storage Mater. 55 (2023) 652–659.

    33. [33]

      S.M. Wu, Y.N. Li, L.T. Chen, et al., Chin. Chem. Lett. 36 (2025) 109796.

    34. [34]

      J. Wang, J. Li, J. Colloid Interface Sci. 584 (2021) 354–359.

    35. [35]

      F. Xu, S.L. Li, S.D. Jing, et al., J. Colloid Interface Sci. 660 (2024) 907–915.

    36. [36]

      S. Lin, J. Dong, R. Chen, et al., J. Alloys Compd. 965 (2023) 171389.

    37. [37]

      X.Y. Zhang, M.N. Lei, S. Tian, J.G. Wang, Rare Met. 43 (2023) 624–634.

    38. [38]

      L. Jin, J. Chen, Z. Fu, et al., Sustain. Mater. Technol. 35 (2023) e00571.

    39. [39]

      Q. Hao, X. Qian, L. Jin, et al., J. Alloys Compd. 967 (2023) 171605.

    40. [40]

      Y. Zhang, H. Yuan, E. Guo, et al., J. Energy Chem. 99 (2024) 604–614.  doi: 10.3390/atmos15050604

    41. [41]

      J. Shang, C. Ma, C. Zhang, et al., J. Energy Storage 82 (2024) 110552.

    42. [42]

      Y. Ning, X. Zeng, X. Peng, et al., J. Mater. Sci. Technol. 187 (2024) 15–27.

    43. [43]

      S. Deng, X. Shi, Y. Zhao, et al., Chem. Eng. J. 433 (2022) 133683.

    44. [44]

      Q. Liu, X. Wang, Y. Wei, et al., J. Alloys Compd. 934 (2023) 167861.

    45. [45]

      H. Xing, K. Zhang, R. Chang, Z. Wen, Y. Xu, J. Colloid Interface Sci. 677 (2025) 181–193.

    46. [46]

      Y. Yao, H. Wang, H. Yang, et al., Adv. Mater. 32 (2019) 1905658.

    47. [47]

      J. Zhao, Z. Yan, J. Alloys Compd. 856 (2021) 156609.

    48. [48]

      X. Qian, J. Cheng, Y. Wang, et al., Phys. Chem. Chem. Phys. 25 (2023) 5559–5568.  doi: 10.1039/d2cp05580e

    49. [49]

      L. Ni, J. Gu, X. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202306528.

    50. [50]

      P. Wan, S. Dong, J. Xiong, et al., J. Colloid Interface Sci. 650 (2023) 582–592.

    51. [51]

      X.C. Guo, P.F. Wan, P. Xia, et al., J. Colloid Interface Sci. 678 (2025) 393–406.

    52. [52]

      P.F. Wan, X.L. Peng, S.Y. Dong, et al., J. Colloid Interface Sci. 657 (2024) 757–766.

    53. [53]

      P. Xia, X.L. Peng, L. Yuan, et al., J. Colloid Interface Sci. 678 (2025) 619–629.

    54. [54]

      R. Sun, P. Xia, X. Guo, et al., Chem. Eng. J. 486 (2024) 150377.

    55. [55]

      N. Wu, J. Wang, C. Liao, et al., J. Alloys Compd. 910 (2022) 164919.

    56. [56]

      J. Zhang, Y. Wang, Z. Zhou, Q. Chen, Y. Tang, Materials 16 (2023) 1635.  doi: 10.3390/ma16041635

    57. [57]

      X. Liu, L. Yuan, X. Peng, et al., Chin. Chem. Lett. 36 (2025) 110369.

    58. [58]

      P. Xia, S.L. Li, L. Yuan, et al., J. Membr. Sci. 694 (2024) 122395.

    59. [59]

      J. Liu, Z. Chen, M. Liu, et al., J. Energy Storage 91 (2024) 111994.

  • 加载中
    1. [1]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    2. [2]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    3. [3]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    4. [4]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    5. [5]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    6. [6]

      Qian WangDong YangWenxing XinYongqi WangWenchang HanWengxiang YanChunman YangFei WangYiyong ZhangZiyi ZhuXue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    9. [9]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    10. [10]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    11. [11]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    12. [12]

      Jinzhou ZhengChaozheng HeChenxu Zhao . Rational catalyst design for N2 electro-reduction: Regulation strategies and quick screen towards enhanced conversion efficiency. Chinese Chemical Letters, 2025, 36(7): 111056-. doi: 10.1016/j.cclet.2025.111056

    13. [13]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    14. [14]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    15. [15]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    16. [16]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    17. [17]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return