Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110)
-
* Corresponding author.
E-mail address: chuanyaozhou@dicp.ac.cn (C. Zhou).
1 These authors contributed equally to this work.
Citation:
Zhiqiang Wang, Yajie Gao, Tianjun Wang, Wei Chen, Zefeng Ren, Xueming Yang, Chuanyao Zhou. Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110)[J]. Chinese Chemical Letters,
;2025, 36(4): 110602.
doi:
10.1016/j.cclet.2024.110602
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
X.B. Chen, S.H. Shen, L.J. Guo, et al., Chem. Rev. 110 (2010) 6503–6570.
doi: 10.1021/cr1001645
A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95 (1995) 735–758.
doi: 10.1021/cr00035a013
E.D. Fakhrutdinova, O.A. Reutova, T.A. Bugrova, et al., Trans. Tianjin Univ. 30 (2024) 198–209.
doi: 10.1007/s12209-024-00388-z
W. Navarra, I. Ritacco, O. Sacco, et al., J. Phys. Chem. C 126 (2022) 7000–7011.
doi: 10.1021/acs.jpcc.2c00152
S. Du, J. Lian, F. Zhang, Trans. Tianjin Univ. 28 (2022) 33–52.
doi: 10.1007/s12209-021-00303-w
M. Zhou, H.F. Wang, Chin. Chem. Lett. 33 (2022) 4705–4709.
doi: 10.1016/j.cclet.2021.12.074
Y. Jiang, Y. Qin, T. Yu, et al., Chin. Chem. Lett. 32 (2021) 1823–1826.
doi: 10.1016/j.cclet.2020.11.010
Z. Wu, F. Xiong, Z. Wang, et al., Chin. Chem. Lett. 29 (2018) 752–756.
doi: 10.1016/j.cclet.2018.01.019
Y. Ma, X. Wang, Y. Jia, et al., Chem. Rev. 114 (2014) 9987–10043.
doi: 10.1021/cr500008u
R. Nakamura, Y. Nakato, Solid State Phenomena 162 (2010) 1–27.
doi: 10.4028/www.scientific.net/SSP.162.1
P. Salvador, Prog. Surf. Sci. 86 (2011) 41–58.
doi: 10.1016/j.progsurf.2010.10.002
A. Imanishi, T. Okamura, N. Ohashi, et al., J. Am. Chem. Soc. 129 (2007) 11569–11578.
doi: 10.1021/ja073206+
R. Nakamura, Y. Nakato, J. Am. Chem. Soc. 126 (2004) 1290–1298.
doi: 10.1021/ja0388764
Q. Guo, C. Zhou, Z. Ma, et al., Chem. Soc. Rev. 45 (2016) 3701–3730.
doi: 10.1039/C5CS00448A
P. Salvador, J. Phys. Chem. C 111 (2007) 17038–17043.
doi: 10.1021/jp074451i
Y. Nosaka, A. Nosaka, ACS Energy Lett. 1 (2016) 356–359.
doi: 10.1021/acsenergylett.6b00174
Y. Nosaka, A.Y. Nosaka, Chem. Rev. 117 (2017) 11302–11336.
doi: 10.1021/acs.chemrev.7b00161
S. Tan, H. Feng, Y. Ji, et al., J. Am. Chem. Soc. 134 (2012) 9978–9985.
doi: 10.1021/ja211919k
W. Yang, D. Wei, X. Jin, et al., J. Phys. Chem. Lett. 7 (2016) 603–608.
doi: 10.1021/acs.jpclett.6b00015
C. Xu, F. Xu, X. Chen, et al., J. Phys. Chem. Lett. 12 (2021) 1066–1072.
doi: 10.1021/acs.jpclett.0c03726
Z. Geng, X. Chen, W. Yang, et al., J. Phys. Chem. C 120 (2016) 26807–26813.
doi: 10.1021/acs.jpcc.6b07774
A. Migani, L. Blancafort, J. Am. Chem. Soc. 139 (2017) 11845–11856.
doi: 10.1021/jacs.7b05121
D. Wang, T. Sheng, J. Chen, et al., Nat. Catal. 1 (2018) 291–299.
doi: 10.1038/s41929-018-0055-z
U. Diebold, Surf. Sci. Rep. 48 (2003) 53–229.
doi: 10.1016/S0167-5729(02)00100-0
L.E. Walle, A. Borg, P. Uvdal, et al., Phys. Rev. B 80 (2009) 235436.
doi: 10.1103/PhysRevB.80.235436
M.A. Henderson, Surf. Sci. 355 (1996) 151–166.
doi: 10.1016/0039-6028(95)01357-1
M.A. Henderson, W.S. Epling, C.H.F. Peden, et al., J. Phys. Chem. B 107 (2003) 534–545.
doi: 10.1021/jp0262113
R.T. Zehr, M.A. Henderson, Surf. Sci. 602 (2008) 1507–1516.
doi: 10.1016/j.susc.2008.02.031
M. Li, W. Hebenstreit, L. Gross, et al., Surf. Sci. 437 (1999) 173–190.
doi: 10.1016/S0039-6028(99)00720-7
E. Lira, J.O. Hansen, P. Huo, et al., Surf. Sci. 604 (2010) 1945–1960.
doi: 10.1016/j.susc.2010.08.004
Y. Du, N.A. Deskins, Z. Zhang, et al., Phys. Rev. Lett. 102 (2009) 096102.
doi: 10.1103/PhysRevLett.102.096102
W.S. Epling, C.H.F. Peden, M.A. Henderson, et al., Surf. Sci. 413 (1998) 333–343.
Z. Zhang, Y. Du, N.G. Petrik, et al., J. Phys. Chem. C 113 (2009) 1908–1916.
doi: 10.1021/jp809001x
C. Kamal, N. Stenberg, L.E. Walle, et al., Phys. Rev. Lett. 126 (2021) 016102.
doi: 10.1103/PhysRevLett.126.016102
M. Amft, L.E. Walle, D. Ragazzon, et al., J. Phys. Chem. C 117 (2013) 17078–17083.
doi: 10.1021/jp405208x
C.Y. Zhou, Z.B. Ma, Z.F. Ren, et al., Energ. Environ. Sci. 5 (2012) 6833–6844.
doi: 10.1039/c2ee21493h
K. Onda, B. Li, H. Petek, Phys. Rev. B 70 (2004) 045415.
doi: 10.1103/PhysRevB.70.045415
K. Onda, B. Li, J. Zhao, et al., Science 308 (2005) 1154–1158.
doi: 10.1126/science.1109366
C.M. Yim, C.L. Pang, G. Thornton, Phys. Rev. Lett. 104 (2010) 036806.
doi: 10.1103/PhysRevLett.104.036806
X.C. Mao, X.F. Lang, Z.Q. Wang, et al., J. Phys. Chem. Lett. 4 (2013) 3839–3844.
doi: 10.1021/jz402053p
Z. Wang, B. Wen, Q. Hao, et al., J. Am. Chem. Soc. 137 (2015) 9146–9152.
doi: 10.1021/jacs.5b04483
J. Li, T. Wang, S. Xia, et al., JACS Au 4 (2024) 491–501.
doi: 10.1021/jacsau.3c00600
V. Henrich, G. Dresselhaus, H. Zeiger, Phys. Rev. Lett. 36 (1976) 1335–1339.
doi: 10.1103/PhysRevLett.36.1335
S. Wendt, P.T. Sprunger, E. Lira, et al., Science 320 (2008) 1755–1759.
doi: 10.1126/science.1159846
T.L. Thompson, J.T. Yates Jr., J. Phys. Chem. B 109 (2005) 18230–18236.
doi: 10.1021/jp0530451
C.B. Xu, W.S. Yang, Q. Guo, et al., Chin. J. Chem. Phys. 26 (2013) 646–650.
doi: 10.1063/1674-0068/26/06/646-650
Y. Du, N.A. Deskins, Z. Zhang, et al., J. Phys. Chem. C 114 (2010) 17080–17084.
doi: 10.1021/jp1036876
J. Cheng, J. VandeVondele, M. Sprik, J. Phys. Chem. C 118 (2014) 5437–5444.
D. Wang, H. Wang, P. Hu, Phys. Chem. Chem. Phys. 17 (2015) 1549–1555.
doi: 10.1039/C4CP04159C
S. Dong, J. Hu, S. Xia, et al., ACS Catal. 11 (2021) 2620–2630.
doi: 10.1021/acscatal.0c03930
M. Shen, M.A. Henderson, J. Phys. Chem. Lett. 2 (2011) 2707–2710.
doi: 10.1021/jz201242k
Z.T. Wang, N. Aaron Deskins, I. Lyubinetsky, J. Phys. Chem. Lett. 3 (2012) 102–106.
doi: 10.1021/jz2014055
C.D. Jaeger, A.J. Bard, J. Phys. Chem. 83 (1979) 3146–3152.
doi: 10.1021/j100487a017
M. Anpo, T. Shima, Y. Kubokawa, Chem. Lett. 14 (1985) 1799–1802.
doi: 10.1246/cl.1985.1799
R.F. Howe, M. Gratzel, J. Phys. Chem. 91 (1987) 3906–3909.
doi: 10.1021/j100298a035
O.I. Micic, Y. Zhang, K.R. Cromack, et al., J. Phys. Chem. 97 (1993) 7277–7283.
doi: 10.1021/j100130a026
P.F. Schwarz, N.J. Turro, S.H. Bossmann, et al., J. Phys. Chem. B 101 (1997) 7127–7134.
doi: 10.1021/jp971315c
Y. Nosaka, S. Komori, K. Yawata, et al., Phys. Chem. Chem. Phys. 5 (2003) 4731–4735.
doi: 10.1039/B307433A
H. Zhou, X. Zhang, J. Zhang, et al., J. Mater. Chem. A 9 (2021) 7650–7655.
doi: 10.1039/D1TA00532D
I.M. Brookes, C.A. Muryn, G. Thornton, Phys. Rev. Lett. 87 (2001) 266103–266106.
doi: 10.1103/PhysRevLett.87.266103
Z.T. Wang, Y.G. Wang, R. Mu, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 1801–1805.
doi: 10.1073/pnas.1613756114
S. Tan, H. Feng, Q. Zheng, et al., J. Am. Chem. Soc. 142 (2020) 826–834.
doi: 10.1021/jacs.9b09132
K. Sebbari, C. Domain, J. Roques, et al., Surf. Sci. 605 (2011) 1275–1280.
doi: 10.1016/j.susc.2011.04.015
S. Wendt, J. Matthiesen, R. Schaub, et al., Phys. Rev. Lett. 96 (2006) 066107.
doi: 10.1103/PhysRevLett.96.066107
P.J.D. Lindan, C.J. Zhang, Phys. Rev. B 72 (2005) 075439.
doi: 10.1103/PhysRevB.72.075439
L.A. Harris, A.A. Quong, Phys. Rev. Lett. 93 (2004) 086105.
doi: 10.1103/PhysRevLett.93.086105
X. Meng, J. Guo, J. Peng, et al., Nat. Phys. 11 (2015) 235–239.
doi: 10.1038/nphys3225
R. Feng, A. Liu, S. Liu, et al., J. Phys. Chem. C 119 (2015) 9798–9804.
doi: 10.1021/jp512798f
A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. 22 (1993) 417–425.
doi: 10.1039/cs9932200417
Y. Murakami, E. Kenji, A.Y. Nosaka, et al., J. Phys. Chem. B 110 (2006) 16808–16811.
doi: 10.1021/jp063293c
Y. Murakami, K. Endo, I. Ohta, et al., J. Phys. Chem. C 111 (2007) 11339–11346.
doi: 10.1021/jp0722049
J. Thiebaud, F. Thévenet, C. Fittschen, J. Phys. Chem. C 114 (2010) 3082–3088.
doi: 10.1021/jp9102542
J. Zhang, Y. Nosaka, J. Phys. Chem. C 118 (2014) 10824–10832.
doi: 10.1021/jp501214m
M.R. Hoffmann, S.T. Martin, W.Y. Choi, et al., Chem. Rev. 95 (1995) 69–96.
doi: 10.1021/cr00033a004
B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, et al., J. Phys. Chem. Ref. Data 14 (1985) 1041–1100.
doi: 10.1063/1.555739
Z.H. Loh, G. Doumy, C. Arnold, et al., Science 367 (2020) 179–182.
doi: 10.1126/science.aaz4740
W. Kim, T. Tachikawa, G.H. Moon, et al., Angew. Chem. 126 (2014) 14260–14265.
doi: 10.1002/ange.201406625
G.H. Ren, M. Zhou, P.J. Hu, et al., Nat. Commun. 15 (2024) 2346.
doi: 10.1038/s41467-024-46749-z
R.L. Kurtz, R. Stock-Bauer, T.E. Msdey, et al., Surf. Sci. 218 (1989) 178–200.
doi: 10.1016/0039-6028(89)90626-2
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015