Citation: Yu Zhang, Weifeng Lin. Electrotunable interfacial friction: A brief review[J]. Chinese Chemical Letters, ;2025, 36(4): 110566. doi: 10.1016/j.cclet.2024.110566 shu

Electrotunable interfacial friction: A brief review

    * Corresponding author.
    E-mail address: linwf@buaa.edu.cn (W. Lin).
  • Received Date: 15 July 2024
    Revised Date: 14 October 2024
    Accepted Date: 17 October 2024
    Available Online: 18 October 2024

Figures(8)

  • Using different external stimuli to control interfacial friction, rather than just pursuing low friction, is a highly attractive research regime due to its economic and scientific importance. One option to achieve such a goal is to use external stimuli that modulate the energy dissipation pathways. In particular, electric stimuli such as surface potential has gained remarkable interest for two reasons: Electrotunable friction has the potential for real-time, in situ manipulation of friction, and external electric stimuli is relatively easy to apply and to remove for reversible change. In this review, we explore the emerging research area of electrotunable friction mainly under the boundary lubrication situation, when the contacting surfaces are separated by a molecularly thin layer, reviewing typical achievements from experiments using electrochemical atomic force microscopy and modified surface force balances, as well as molecular dynamics simulations. Additionally, we explore the theoretical and practical challenges that may need to be tackled in the future.
  • 加载中
    1. [1]

      H. Liu, B. Yang, C. Wang, et al., Friction 11 (2023) 839–864.  doi: 10.1007/s40544-022-0639-0

    2. [2]

      W. Lin, J. Klein, Adv. Mater. 33 (2021) e2005513.

    3. [3]

      B.N.T. Persson, History of tribology, in: T. Mang (Ed. ), Encyclopedia of Lubricants and Lubrication, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 791–797.

    4. [4]

      Z. Zou, H. Li, K. Yu, et al., Exploration 3 (2023) 20220132.

    5. [5]

      V.P. Zhuravlev, Mech. Solids 48 (2013) 364–369.

    6. [6]

      B. Armstrong-Hélouvry, P. Dupont, C.C. De Wit, Automatica 30 (1994) 1083–1138.

    7. [7]

      Q.J. Wang, D. Zhu, Hertz theory: contact of spherical surfaces, in: Q.J. Wang, Y.W. Chung (Eds. ), Encyclopedia of Tribology, Springer US, Boston, 2013, pp. 1654–1662.

    8. [8]

      F.P. Bowden, L. Leben, Proc. R. Soc. London, Ser. A 169 (1939) 371–391.

    9. [9]

      F.P. Bowden, D. Tabor, Proc. R. Soc. London, Ser. A 169 (1939) 391–413.

    10. [10]

      J.A. Greenwood, Contact of rough surfaces, in: I.L. Singer, H.M. Pollock (Eds. ), Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer, Netherlands, Dordrecht, 1992, pp. 37–56.

    11. [11]

      E. Rabinowicz, Friction fluctuations, in: I.L. Singer, H.M. Pollock (Eds. ), Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer, Netherlands, Dordrecht, 1992, pp. 25–34.

    12. [12]

      O. Reynolds, Philos. Trans. R. Soc. London 177 (1997) 157–234.

    13. [13]

      B. Jacobson, Tribol. Int. 36 (2003) 781–789.

    14. [14]

      M. Kalin, I. Velkavrh, J. Vižintin, Wear 267 (2009) 1232–1240.

    15. [15]

      H.A. Spikes, Boundary lubrication and boundary films, in: D. Dowson, C.M. Taylor, T.H.C. Childs, M. Godet, G. Dalmaz (Eds. ), Tribology Series, Elsevier, 1993, pp. 331–346.

    16. [16]

      W.B. Hardy, I. Doubleday, Proc. R. Soc. London, Ser. A 100 (1997) 550–574.

    17. [17]

      B.N.J. Persson, Phys. Rev. B: Condens. Matter 48 (1993) 18140–18158.

    18. [18]

      J. Gao, W.D. Luedtke, D. Gourdon, et al., J. Phys. Chem. B 108 (2004) 3410–3425.

    19. [19]

      S.H. Loring, R.E. Brown, A. Gouldstone, J.P. Butler, J. Biomech. 38 (2005) 2390–2396.

    20. [20]

      Z. Xu, H. Tsai, H.L. Wang, M. Cotlet, J. Phys. Chem. B 114 (2010) 11746–11752.  doi: 10.1021/jp105032y

    21. [21]

      F.T. Limpoco, R.C. Advincula, S.S. Perry, Langmuir 23 (2007) 12196–12201.  doi: 10.1021/la701272a

    22. [22]

      M.T. Müller, X. Yan, S. Lee, et al., Macromolecules 38 (2005) 5706–5713.  doi: 10.1021/ma0501545

    23. [23]

      A. Dedinaite, E. Thormann, G. Olanya, et al., Soft Matter 6 (2010) 2489–2498.  doi: 10.1039/c003320k

    24. [24]

      Y. Wu, X. Pei, X. Wang, et al., NPG Asia Mater. 6 (2014) e136-e136.

    25. [25]

      Y. Wu, M. Cai, X. Pei, et al., Macromol. Rapid. Commun. 34 (2013) 1785–1790.  doi: 10.1002/marc.201300649

    26. [26]

      E.B. Zhulina, M. Rubinstein, Soft Matter 8 (2012) 9376–9383.  doi: 10.1039/c2sm25863c

    27. [27]

      Y. Higaki, M. Kobayashi, A. Takahara, Langmuir 36 (2020) 9015–9024.  doi: 10.1021/acs.langmuir.0c01672

    28. [28]

      D. Liu, D.J. Broer, Soft Matter 10 (2014) 7952–7958.

    29. [29]

      D. Liu, D.J. Broer, Angew. Chem. 126 (2014) 4630–4634.  doi: 10.1002/ange.201400370

    30. [30]

      J. Kang, X. Yang, X. Yang, et al., Chin. Chem. Lett. 35 (2024) 109297.

    31. [31]

      J.J. Blackstock, Z. Li, M.R. Freeman, D.R. Stewart, Surf. Sci. 546 (2003) 87–96.

    32. [32]

      N. Vogel, J. Zieleniecki, I. Koper, Nanoscale 4 (2012) 3820–3832.  doi: 10.1039/c2nr30434a

    33. [33]

      J. Wang, J. Li, L. Fang, et al., Tribol. Lett. 55 (2014) 405–412.

    34. [34]

      J. Liu, M. Miao, K. Jiang, et al., Nano Energy 48 (2018) 320–326.

    35. [35]

      H. Zeng, Y. Zhang, S. Mao, et al., J. Mater. Chem. C 5 (2017) 5877–5881.

    36. [36]

      C. Joachim, M.A. Ratner, Nanotechnology 15 (2004) 1065–1075.

    37. [37]

      P. Spitzer, S. Wunderli, K. Maksymiuk, et al., Reference electrodes for aqueous solutions, in: G. Inzelt, A. Lewenstam, F. Scholz (Eds. ), Handbook of Reference Electrodes, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 77–143.

    38. [38]

      N. Elgrishi, K.J. Rountree, B.D. McCarthy, et al., J. Chem. Educ. 95 (2017) 197–206.

    39. [39]

      F. Bresme, A.A. Kornyshev, S. Perkin, M. Urbakh, Nat. Mater. 21 (2022) 848–858.  doi: 10.1038/s41563-022-01273-7

    40. [40]

      B. Voigtländer, Atomic Force Microscopy, 2nd ed., Springer, Cham, Jülich, 2019.

    41. [41]

      Z. Zhang, S. Said, K. Smith, et al., Adv. Energy Mater. 11 (2021) 2101518.

    42. [42]

      G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56 (1986) 930–933.

    43. [43]

      Y.F. Dufrene, T. Ando, R. Garcia, et al., Nat. Nanotechnol. 12 (2017) 295–307.  doi: 10.1038/nnano.2017.45

    44. [44]

      R. Delalande, D. Garcia-Sanchez, L. Belliard, Phys. Rev. B: Condens. Matter 107 (2023) 085409.

    45. [45]

      D.F. Ogletree, R.W. Carpick, M. Salmeron, Rev. Sci. Instrum. 67 (1996) 3298–3306.

    46. [46]

      S.Y. Luchkin, M.A. Kirsanova, D.A. Aksyonov, et al., ACS Appl. Energy Mater. 5 (2022) 7758–7769.  doi: 10.1021/acsaem.2c01239

    47. [47]

      A. Jetybayeva, N. Schön, J. Oh, et al., ACS Appl. Energy Mater. 5 (2022) 1731–1742.  doi: 10.1021/acsaem.1c03173

    48. [48]

      L. Wang, A. Menakath, F. Han, et al., Nat. Chem. 11 (2019) 789–796.  doi: 10.1038/s41557-019-0304-z

    49. [49]

      C.L. Wirth, R.M. Rock, P.J. Sides, D.C. Prieve, Langmuir 27 (2011) 9781–9791.  doi: 10.1021/la2017038

    50. [50]

      P.B. Ishai, M.S. Talary, A. Caduff, et al., Meas. Sci. Technol. 24 (2013) 102001.  doi: 10.1088/0957-0233/24/10/102001

    51. [51]

      J.P. Badiali, J. Goodisman, J. Phys. Chem. 79 (1975) 223–232.  doi: 10.1021/j100570a007

    52. [52]

      T. Kamijo, M. Kasuya, M. Mizukami, K. Kurihara, Chem. Lett. 40 (2011) 674–675.  doi: 10.1246/cl.2011.674

    53. [53]

      Y. Liang, J.H.K. Pfisterer, D. McLaughlin, et al., Small Methods 3 (2019) 1800387.

    54. [54]

      J. Abbou, C. Demaille, M. Druet, J. Moiroux, Anal. Chem. 74 (2002) 6355–6363.

    55. [55]

      M.R. Nellist, F.A.L. Laskowski, J. Qiu, et al., Nat. Energy. 3 (2017) 46–52.  doi: 10.1038/s41560-017-0048-1

    56. [56]

      A. Anne, A. Chovin, C. Demaille, M. Lafouresse, Anal. Chem. 83 (2011) 7924–7932.  doi: 10.1021/ac201907v

    57. [57]

      E. Aleksandrova, R. Hiesgen, K.A. Friedrich, E. Roduner, Phys. Chem. Chem. Phys. 9 (2007) 2735–2743.  doi: 10.1039/b617516c

    58. [58]

      H. Lang, Y. Peng, G. Shao, et al., J. Mater. Chem. C 7 (2019) 6041–6051.  doi: 10.1039/c9tc01148j

    59. [59]

      C. Filoni, K. Wandelt, L. Marfori, et al., Appl. Surf. Sci. 611 (2023) 155542.

    60. [60]

      S. Li, F. Eghiaian, C. Sieben, et al., Biophys. J. 100 (2011) 637–645.

    61. [61]

      K. Engelhardt, E. Preis, U. Bakowsky, Methods. Mol. Biol. 2622 (2023) 253–263.  doi: 10.1007/978-1-0716-2954-3_23

    62. [62]

      K. Wieland, G. Ramer, V.U. Weiss, et al., Nano Res. 12 (2019) 197–203.  doi: 10.1007/s12274-018-2202-x

    63. [63]

      M.A. Lantz, S.J. O'Shea, M.E. Welland, K.L. Johnson, Phys. Rev. B: Condens. Matter 55 (1997) 10776–10785.

    64. [64]

      E. Aleksandrova, S. Hink, R. Hiesgen, E. Roduner, J. Phys. Condens. Matter 23 (2011) 234109.  doi: 10.1088/0953-8984/23/23/234109

    65. [65]

      G.E.A. Jacob, N. Israelachvili, J. Chem. Soc. Faraday Trans. 1 74 (1978) 975–1001.

    66. [66]

      L. Tsarkova, X. Zhang, N. Hadjichristidis, J. Klein, Macromolecules 40 (2007) 25392547.

    67. [67]

      J.N. Israelachvili, J. Colloid Interface Sci. 44 (1973) 259–272.

    68. [68]

      U. Raviv, S. Perkin, P. Laurat, J. Klein, Langmuir 20 (2004) 5322–5332.

    69. [69]

      D. Jin, Y. Hwang, L. Chai, et al., Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2113690119.

    70. [70]

      S. Perkin, L. Chai, N. Kampf, et al., Langmuir 22 (2006) 6142–6152.  doi: 10.1021/la053097h

    71. [71]

      J.K. Liraz Chai, Langmuir 23 (2007) 7777–7783.

    72. [72]

      C.D. van Engers, N.E.A. Cousens, V. Babenko, et al., Nano Lett. 17 (2017) 3815–3821.  doi: 10.1021/acs.nanolett.7b01181

    73. [73]

      J. Britton, N.E. Cousens, S.W. Coles, et al., Langmuir 30 (2014) 11485–11492.  doi: 10.1021/la5028493

    74. [74]

      W. Lin, J. Klein, Appl. Phys. Rev. 8 (2021) 031316.

    75. [75]

      R. Tivony, S. Safran, P. Pincus, et al., Nat. Commun. 9 (2018) 4203.

    76. [76]

      C.D. van Engers, M. Balabajew, A. Southam, S. Perkin, Rev. Sci. Instrum. 89 (2018) 123901.

    77. [77]

      M.T. Clarkson, J. Phys. D: Appl. Phys. 22 (1989) 475–482.  doi: 10.1088/0022-3727/22/4/001

    78. [78]

      C. Drummond, Phys. Rev. Lett. 109 (2012) 154302.  doi: 10.1103/PhysRevLett.109.154302

    79. [79]

      P.M. McGuiggan, J. Zhang, S.M. Hsu, Tribol. Lett. 10 (2001) 217–223.

    80. [80]

      J. Israelachvili, Y. Min, M. Akbulut, et al., Rep. Prog. Phys. 73 (2010) 036601.  doi: 10.1088/0034-4885/73/3/036601

    81. [81]

      C. Leriche, S. Franklin, B. Weber, Wear 498-499 (2022) 204284.

    82. [82]

      S. Korres, M. Dienwiebel, Rev. Sci. Instrum. 81 (2010) 063904.

    83. [83]

      L. Shi, V.I. Sikavitsas, A. Striolo, Ann. Biomed. Eng. 39 (2011) 132–146.  doi: 10.1007/s10439-010-0167-3

    84. [84]

      J. Wu, T. Liu, N. Yu, et al., Tribol. Lett. 69 (2021) 36.

    85. [85]

      M. Michalec, P. Svoboda, I. Krupka, et al., Friction 8 (2020) 982–994.  doi: 10.1007/s40544-019-0342-y

    86. [86]

      Y.P. Ding, R. Liu, L. Wang, et al., Prot. Met. Phys. Chem. Surf. 56 (2020) 392–404.  doi: 10.1134/s2070205120020069

    87. [87]

      S. Kawada, S. Ogawa, S. Sasaki, M. Miyatake, Tribol. Online. 14 (2019) 71–77.  doi: 10.2474/trol.14.71

    88. [88]

      S. Radice, T. Holcomb, R. Pourzal, et al., Biotribology 18 (2019) 100090.

    89. [89]

      B. Weber, T. Suhina, T. Junge, et al., Nat. Commun. 9 (2018) 888.

    90. [90]

      F. Mangolini, A. Rossi, N.D. Spencer, Tribol. Lett. 45 (2011) 207–218.

    91. [91]

      G. Greenwood, J.M. Kim, S.M. Nahid, et al., Nat. Commun. 14 (2023) 5801.

    92. [92]

      B. Shi, X. Gan, K. Yu, et al., npg 2D Mater. Appl. 6 (2022) 39.

    93. [93]

      J.N. Israelachvili, J. Colloid Interface Sci. 110 (1986) 263–271.

    94. [94]

      J.M. Gregoire, D. Dale, A. Kazimirov, et al., Rev. Sci. Instrum. 80 (2009) 123905.

    95. [95]

      U. Raviv, P. Laurat, J. Klein, Nature 413 (2001) 51–54.

    96. [96]

      U. Raviv, S. Giasson, J. Frey, J. Klein, J. Phys. Condens. Matter 14 (2002) 9275–9283.

    97. [97]

      Y. Leng, J. Phys. Condens. Matter 20 (2008) 354017.  doi: 10.1088/0953-8984/20/35/354017

    98. [98]

      Y. Leng, P.T. Cummings, Hydration Structure and Shear Viscosity of Water Nanoconfined Between Mica Surfaces (2006) 505–510.

    99. [99]

      N. Kavokine, M.L. Bocquet, L. Bocquet, Nature 602 (2022) 84–90.  doi: 10.1038/s41586-021-04284-7

    100. [100]

      E.N.D.C. Andrade, C. Dodd, Proc. R. Soc. London, Ser. A 187 (1997) 296–337.

    101. [101]

      E.N.D.C. Andrade, C. Dodd, Nature 143 (1939) 26–27.  doi: 10.1038/143026a0

    102. [102]

      R.J. Hunter, J. Leyendekkers, J. Chem. Soc., Faraday Trans. 1 74 (1978) 450–455.

    103. [103]

      E.N.D.C. Andrade, C. Dodd, Proc. R. Soc. London, Ser. A 204 (1997) 449–464.

    104. [104]

      S. Li, P. Bai, Y. Li, et al., Friction 9 (2020) 513–523.  doi: 10.3390/e22050513

    105. [105]

      L. Ma, A. Gaisinskaya-Kipnis, N. Kampf, J. Klein, Nat. Commun. 6 (2015) 6060.

    106. [106]

      A. Gaisinskaya-Kipnis, L. Ma, N. Kampf, J. Klein, Langmuir 32 (2016) 4755–4764.  doi: 10.1021/acs.langmuir.6b00707

    107. [107]

      L. Pashazanusi, M. Oguntoye, S. Oak, et al., Langmuir 34 (2018) 801–806.  doi: 10.1021/acs.langmuir.7b03023

    108. [108]

      L. Pashazanusi, K. Kristiansen, S. Li, et al., Front. Mech. Eng. 5 (2019), doi: 10.3389/fmech.2019.00039.  doi: 10.3389/fmech.2019.00039

    109. [109]

      R.M. Pashley, J.N. Israelachvili, J. Colloid Interface Sci. 97 (1984) 446–455.

    110. [110]

      U. Raviv, J. Klein, Science 297 (2002) 1540.

    111. [111]

      Z. Li, Q. Liu, D. Zhang, et al., Nanoscale Horiz. 7 (2022) 368–375.  doi: 10.1039/d1nh00564b

    112. [112]

      T. Han, C. Zhang, J. Luo, Langmuir 34 (2018) 11281–11291.  doi: 10.1021/acs.langmuir.8b01722

    113. [113]

      T. Han, C. Zhang, J. Li, et al., J. Phys. Chem. Lett. 11 (2019) 184–190.

    114. [114]

      P. Ma, Y. Liu, K. Han, et al., Friction 12 (2023) 591–605.  doi: 10.56028/aetr.7.1.591.2023

    115. [115]

      T. Han, W. Cao, Z. Xu, et al., Sci. Adv. 9 (2023) eadf3902.

    116. [116]

      S. Jahn, J. Seror, J. Klein, Annu. Rev. Biomed. Eng. 18 (2016) 235–258.  doi: 10.1146/annurev-bioeng-081514-123305

    117. [117]

      J. Klein, Friction 1 (2013) 1–23.

    118. [118]

      Z. Li, Q. Liu, Q. Li, M. Dong, Nano Res. 16 (2022) 1096–1100.

    119. [119]

      J. Li, C. Zhang, P. Cheng, et al., Langmuir 32 (2016) 5593–5599.  doi: 10.1021/acs.langmuir.6b01237

    120. [120]

      N. Kampf, C. Wu, Y. Wang, J. Klein, Langmuir 32 (2016) 11754–11762.  doi: 10.1021/acs.langmuir.6b02657

    121. [121]

      M. Chen, W.H. Briscoe, S.P. Armes, J. Klein, Science 323 (2009) 1698.  doi: 10.1126/science.1169399

    122. [122]

      O. Tairy, N. Kampf, M.J. Driver, et al., Macromolecules 48 (2015) 140–151.  doi: 10.1021/ma5019439

    123. [123]

      R. Sorkin, Y. Dror, N. Kampf, J. Klein, Langmuir 30 (2014) 5005–5014.  doi: 10.1021/la500420u

    124. [124]

      R. Goldberg, A. Schroeder, Y. Barenholz, J. Klein, Biophys. J. 100 (2011) 2403–2411.

    125. [125]

      Y. Cao, N. Kampf, W. Lin, J. Klein, Soft Matter 16 (2020) 3973–3980.  doi: 10.1039/d0sm00215a

    126. [126]

      W. Lin, M. Kluzek, N. Iuster, et al., Science 370 (2020) 335–338.  doi: 10.1126/science.aay8276

    127. [127]

      P. Ma, Y. Liu, Y. Tian, L. Ma, Colloids Surf. A 660 (2023) 130862.

    128. [128]

      R. Tivony, Y. Zhang, J. Klein, J. Phys. Chem. C 125 (2021) 3616–3622.  doi: 10.1021/acs.jpcc.0c11264

    129. [129]

      T. Gao, J. Li, S. Yi, J. Luo, J. Phys. Chem. C 124 (2020) 23745–23751.  doi: 10.1021/acs.jpcc.0c07358

    130. [130]

      R.D. Rogers, K.R. Seddon, Science 302 (2003) 792–793.

    131. [131]

      O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, ACS Nano 11 (2017) 6825–6831.  doi: 10.1021/acsnano.7b01835

    132. [132]

      X. Gong, L. Li, Chin. Chem. Lett. 28 (2017) 2045–2052.

    133. [133]

      R.M. Espinosa-Marzal, A. Arcifa, A. Rossi, N.D. Spencer, J. Phys. Chem. C 118 (2014) 6491–6503.  doi: 10.1021/jp5000123

    134. [134]

      R.M. Espinosa-Marzal, A. Arcifa, A. Rossi, N.D. Spencer, J. Phys. Chem. Lett. 5 (2014) 179–184.  doi: 10.1021/jz402451v

    135. [135]

      D. Zheng, X. Wang, M. Zhang, C. Ju, Tribol. Lett. 67 (2019) 47.

    136. [136]

      H. Khanmohammadi, W. Wijanarko, N. Espallargas, Tribol. Lett. 68 (2020) 130.

    137. [137]

      A. Khan, O.P. Sharma, O.P. Khatri, Ind. Eng. Chem. Res. 60 (2020) 333–342.

    138. [138]

      R. Gusain, A. Khan, O.P. Khatri, J. Mol. Liq. 301 (2020) 112322.

    139. [139]

      R. González, D. Ramos, D. Blanco, et al., Friction 7 (2018) 282–288.

    140. [140]

      W. Lin, N. Kampf, J. Klein, ACS Nano 14 (2020) 7008–7017.  doi: 10.1021/acsnano.0c01559

    141. [141]

      T. Gao, J. Li, W. Wang, J. Luo, Friction 11 (2022) 513–523.  doi: 10.1001/jamaoncol.2021.7249

    142. [142]

      S. He, Y. Meng, Y. Tian, Tribol. Lett. 41 (2010) 485–494.

    143. [143]

      F. Gatti, T. Amann, A. Kailer, et al., Sci. Rep. 10 (2020) 17634.

    144. [144]

      G.A. Pilkington, A. Oleshkevych, P. Pedraz, et al., Phys. Chem. Chem. Phys. 22 (2020) 19162–19171.  doi: 10.1039/d0cp02736g

    145. [145]

      Z. Wang, L. Zhu, L. Si, et al., J. Mater. Eng. Perform. 29 (2020) 5718–5727.  doi: 10.1007/s11665-020-05073-5

    146. [146]

      W. Huang, L. Kong, X. Wang, Tribol. Lett. 65 (2016) 17.

    147. [147]

      C.S. Perez-Martinez, T.S. Groves, S. Perkin, J. Phys. Condens. Matter 33 (2021) 31LT02.  doi: 10.1088/1361-648x/ac03d3

    148. [148]

      Y. Zhang, C. Wang, L. Shi, et al., Intelligent friction testing for lubricating properties of ionic liquids under an external electric field, in: 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), 2022, pp. 989–993.

    149. [149]

      S. Perkin, T. Albrecht, J. Klein, Phys. Chem. Chem. Phys. 12 (2010) 1243–1247.

    150. [150]

      B. Rotenberg, M. Salanne, J. Phys. Chem. Lett. 6 (2015) 4978–4985.  doi: 10.1021/acs.jpclett.5b01889

    151. [151]

      G. Krämer, R. Bennewitz, J. Phys. Chem. C 123 (2019) 28284–28290.  doi: 10.1021/acs.jpcc.9b09058

    152. [152]

      F. Nemoto, M. Kofu, M. Nagao, et al., J. Chem. Phys. 149 (2018) 054502.

    153. [153]

      C. Hardacre, J.D. Holbrey, C.L. Mullan, et al., J. Chem. Phys. 133 (2010) 074510.

    154. [154]

      H.K. Kashyap, C.S. Santos, H.V. Annapureddy, et al., Faraday Discuss. 154 (2012) 133–143.

    155. [155]

      S. Perkin, Phys. Chem. Chem. Phys. 14 (2012) 5052–5062.  doi: 10.1039/c2cp23814d

    156. [156]

      S. Perkin, L. Crowhurst, H. Niedermeyer, et al., Chem. Commun. 47 (2011) 6572–6574.  doi: 10.1039/c1cc11322d

    157. [157]

      O. Werzer, E.D. Cranston, G.G. Warr, et al., Phys. Chem. Chem. Phys. 14 (2012) 5147–5152.

    158. [158]

      C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508.

    159. [159]

      T. Yamaguchi, S. Miyake, S. Koda, J. Phys. Chem. B 114 (2010) 8126–8133.  doi: 10.1021/jp1024137

    160. [160]

      H. Li, R.J. Wood, M.W. Rutland, R. Atkin, Chem. Commun. 50 (2014) 4368–4370.  doi: 10.1039/c4cc00979g

    161. [161]

      J. Sweeney, F. Hausen, R. Hayes, et al., Phys. Rev. Lett. 109 (2012) 155502.  doi: 10.1103/PhysRevLett.109.155502

    162. [162]

      H. Li, M.W. Rutland, M. Watanabe, R. Atkin, Faraday Discuss. 199 (2017) 311–322.

    163. [163]

      O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, J. Phys. Chem. Lett. 6 (2015) 3998–4004.  doi: 10.1021/acs.jpclett.5b01802

    164. [164]

      S. Di Lecce, A.A. Kornyshev, M. Urbakh, F. Bresme, Phys. Chem. Chem. Phys. 23 (2021) 22174–22183.  doi: 10.1039/d1cp03345j

    165. [165]

      K. Pivnic, O.Y. Fajardo, F. Bresme, et al., J. Phys. Chem. C 122 (2018) 5004–5012.  doi: 10.1021/acs.jpcc.8b00516

    166. [166]

      S. Di Lecce, A.A. Kornyshev, M. Urbakh, F. Bresme, ACS Appl. Mater. Interfaces 12 (2020) 4105–4113.  doi: 10.1021/acsami.9b19283

    167. [167]

      Y. Zhang, D. Jin, R. Tivony, et al., Nat. Mater. 23 (2024) 1720–1727.  doi: 10.1038/s41563-024-01926-9

    168. [168]

      J.K. Di Jin, ArXiv (2023) arXiv: 2303.08555v08555, doi: 10.48550/arXiv.2303.08555.

    169. [169]

      D. Jin, Y. Zhang, J. Klein, ArXiv (2023) arXiv: 2303.08551v08552, doi: 10.48550/arXiv.2303.08551.

    170. [170]

      J.Y. Park, D.F. Ogletree, P.A. Thiel, M. Salmeron, Science 313 (2006) 186-186.

    171. [171]

      A. Song, R. Shi, H. Lu, et al., Nano Lett. 22 (2022) 1889–1896.  doi: 10.1021/acs.nanolett.1c04116

    172. [172]

      F. He, X. Yang, Z. Bian, et al., Small 15 (2019) e1904613.

    173. [173]

      P. Zhu, H. Peng, G. Zhao, N. Chen, Rev. Sci. Instrum. 92 (2021) 055002.

    174. [174]

      D. Choi, S. Lee, S. Kim, et al., Scr. Mater. 58 (2008) 870–873.

    175. [175]

      Y. Meng, H. Jiang, P.L. Wong, Tribol. Trans. 44 (2001) 567–574.  doi: 10.1080/10402000108982496

    176. [176]

      N.P. Brandon, R.J.K. Wood, Wear 170 (1993) 33–38.

    177. [177]

      H. Jiang, P.L. Wong, Y. Meng, S. Wen, Lubrication Science 15 (2003) 275–292.  doi: 10.1002/ls.3010150307

    178. [178]

      Y. Meng, B. Hu, Q. Chang, Wear 260 (2006) 305–309.

    179. [179]

      P. Snapp, J.M. Kim, C. Cho, et al., NPG Asia Mater. 12 (2020) 22.

    180. [180]

      F. Hausen, J.A. Zimmet, R. Bennewitz, Surf. Sci. 607 (2013) 20–24.

    181. [181]

      A. Labuda, F. Hausen, N.N. Gosvami, et al., Langmuir 27 (2011) 2561–2566.  doi: 10.1021/la104497t

    182. [182]

      M. Valtiner, X. Banquy, K. Kristiansen, et al., Langmuir 28 (2012) 13080–13093.  doi: 10.1021/la3018216

    183. [183]

      M. Valtiner, K. Kristiansen, G.W. Greene, J.N. Israelachvili, Adv. Mater. 23 (2011) 2294–2299.  doi: 10.1002/adma.201003709

    184. [184]

      S.H. Donaldson, M. Valtiner, M.A. Gebbie, et al., Soft Matter 9 (2013) 5231–5238.  doi: 10.1039/c3sm27217f

    185. [185]

      Z. -L. Cheng, L. Ma, Z. Liu, Chin. Chem. Lett. 32 (2021) 583–586.

    186. [186]

      X. Ge, Z. Chai, Q. Shi, et al., Friction 11 (2023) 1953–1973.  doi: 10.1007/s40544-022-0681-y

    187. [187]

      M. Rejhon, F. Lavini, A. Khosravi, et al., Nat. Nanotechnol. 17 (2022) 1280–1287.  doi: 10.1038/s41565-022-01237-7

    188. [188]

      M. Ruths, N.A. Alcantar, J.N. Israelachvili, J. Phys. Chem. B 107 (2003) 11149–11157.

    189. [189]

      J.E. Houston, H.I. Kim, Acc. Chem. Res. 35 (2002) 547–553.

    190. [190]

      N.J. Brewer, B.D. Beake, G.J. Leggett, Langmuir 17 (2001) 1970–1974.

    191. [191]

      M.B. Elinski, B.D. Menard, Z. Liu, J.D. Batteas, J. Phys. Chem. C 121 (2017) 5635–5641.  doi: 10.1021/acs.jpcc.7b00012

    192. [192]

      J. Li, W. Cao, J. Li, M. Ma, J. Colloid. Interface. Sci. 596 (2021) 44–53.  doi: 10.15586/qas.v13i4.968

    193. [193]

      K. Ahmad, Q. Yang, A. Martini, Langmuir 38 (2022) 6273–6280.  doi: 10.1021/acs.langmuir.1c03234

    194. [194]

      Q. Yang, W. Nanney, X. Hu, et al., Tribol. Lett. 68 (2020) 63.

    195. [195]

      J. Lahann, S. Mitragotri, T. -N. Tran, et al., Science 299 (2003) 371–374.

    196. [196]

      K.S.K. Karuppiah, Y. Zhou, L.K. Woo, S. Sundararajan, Langmuir 25 (2009) 12114–12119.  doi: 10.1021/la901221g

    197. [197]

      M. Luo, A. Amegashie, A. Chua, et al., J. Phys. Chem. C 116 (2012) 13964–13971.  doi: 10.1021/jp3020996

    198. [198]

      P. Bhadra, S.W.I. Siu, Langmuir 37 (2021) 1913–1924.  doi: 10.1021/acs.langmuir.0c03414

    199. [199]

      S.T. Milner, Science 251 (1991) 905–914.  doi: 10.1126/science.251.4996.905

    200. [200]

      J. Klein, E. Kumacheva, D. Mahalu, et al., Nature 370 (1994) 634–636.

    201. [201]

      M. Chen, W.H. Briscoe, S.P. Armes, et al., ChemPhysChem 8 (2007) 1303–1306.  doi: 10.1002/cphc.200700131

    202. [202]

      P.A. Schorr, T.C.B. Kwan, S.M. Kilbey, et al., Macromolecules 36 (2003) 389–398.

    203. [203]

      K. Ohno, T. Sakamoto, T. Minagawa, Y. Okabe, Macromolecules 40 (2007) 723–730.  doi: 10.1021/ma0613234

    204. [204]

      H. Sakata, M. Kobayashi, H. Otsuka, A. Takahara, Polym. J. 37 (2005) 767–775.  doi: 10.1295/polymj.37.767

    205. [205]

      E. Eiser, J. Klein, T.A. Witten, L.J. Fetters, Phys. Rev. Lett. 82 (1999) 5076–5079.

    206. [206]

      J. Klein, E. Kumacheva, D. Perahia, L.J. Fetters, Acta Polym. 49 (1998) 617–625.

    207. [207]

      S. Feng, Y. Liu, J. Li, S. Wen, Macromolecules 54 (2021) 5719–5727.  doi: 10.1021/acs.macromol.1c00430

    208. [208]

      V. Adibnia, M. Olszewski, G. De Crescenzo, et al., J. Am. Chem. Soc. 142 (2020) 14843–14847.  doi: 10.1021/jacs.0c07215

    209. [209]

      M. Chen, H. Briscoe Wuge, P. Armes Steven, J. Klein, Science 323 (2009) 1698–1701.  doi: 10.1126/science.1169399

    210. [210]

      U. Raviv, S. Giasson, N. Kampf, et al., Nature 425 (2003) 163–165.

    211. [211]

      U. Raviv, S. Giasson, N. Kampf, et al., Langmuir 24 (2008) 8678–8687.  doi: 10.1021/la7039724

    212. [212]

      Y. Zhang, W. Zhao, X. Zhao, et al., Friction 12 (2024) 1757–1770.

    213. [213]

      W. Zhao, Y. Zhang, X. Zhao, et al., Adv. Sci. (2024) e2401000.

    214. [214]

      Y. Zhang, W. Zhao, S. Ma, et al., Nat. Commun. 13 (2022) 377.

    215. [215]

      D.C. Grahame, Chem. Rev. 41 (1947) 441–501.  doi: 10.1021/cr60130a002

    216. [216]

      J.N. Israelachvili, Intermolecular and Surface Forces, Elsevier, Singapore, 2011.

    217. [217]

      H. Ouyang, Z. Xia, J. Zhe, Nanotechnology 20 (2009) 195703.  doi: 10.1088/0957-4484/20/19/195703

    218. [218]

      S. Sun, G. Yin, Y.K. Lee, et al., Biochem. Biophys. Res. Commun. 404 (2011) 684–688.

    219. [219]

      H. Ding, C. Duan, C. Tong, J. Chem. Phys. 146 (2017) 034901.

    220. [220]

      G. Kasparyan, J.S. Hub, J. Chem. Theory. Comput. 19 (2023) 2676–2683.  doi: 10.1021/acs.jctc.3c00065

    221. [221]

      R.A. Bockmann, B.L. de Groot, S. Kakorin, et al., Biophys. J. 95 (2008) 1837–1850.  doi: 10.1529/biophysj.108.129437

    222. [222]

      R. Tivony, J. Klein, Faraday Discuss. 199 (2017) 261–277.

    223. [223]

      S.L.C. Drew McCormack, Derek Y.C. Chan, J. Colloid Interface Sci. 169 (1995) 177–196.

    224. [224]

      S.L. Carnie, D.Y.C. Chan, J. Colloid Interface Sci. 155 (1993) 297–312.

    225. [225]

      S.L. Carnie, D.Y.C. Chan, J.S. Gunning, Langmuir 10 (1994) 2993–3009.  doi: 10.1021/la00021a024

    226. [226]

      R. Tivony, N. Iuster, J. Klein, Langmuir 32 (2016) 7346–7355.  doi: 10.1021/acs.langmuir.6b01697

    227. [227]

      R. Tivony, D.B. Yaakov, G. Silbert, J. Klein, Langmuir 31 (2015) 12845–12849.  doi: 10.1021/acs.langmuir.5b03326

    228. [228]

      M.J. Holst, F. Saied, J. Comput. Chem. 16 (1995) 337–364.  doi: 10.1002/jcc.540160308

    229. [229]

      A.E. James, D.J.A. Williams, J. Colloid Interface Sci. 107 (1985) 44–59.

    230. [230]

      S.L. Carnie, D.Y.C. Chan, J. Colloid Interface Sci. 161 (1993) 260–264.

    231. [231]

      V.E. Shubin, P. Kékicheff, J. Colloid Interface Sci. 155 (1993) 108–123.

    232. [232]

      G. Trefalt, S.H. Behrens, M. Borkovec, Langmuir 32 (2016) 380–400.  doi: 10.1021/acs.langmuir.5b03611

    233. [233]

      I. Popa, G. Gillies, G. Papastavrou, M. Borkovec, J. Phys. Chem. B 114 (2010) 3170–3177.  doi: 10.1021/jp911482a

    234. [234]

      P.M. Biesheuvel, M. van der Veen, W. Norde, J. Phys. Chem. B 109 (2005) 4172–4180.  doi: 10.1021/jp0463823

    235. [235]

      W. Rocchia, E. Alexov, B. Honig, J. Phys. Chem. B 105 (2001) 6507–6514.

    236. [236]

      A. Nicholls, B. Honig, J. Comput. Chem. 12 (1991) 435–445.  doi: 10.1002/jcc.540120405

    237. [237]

      K.E. Forsten, R.E. Kozack, D.A. Lauffenburger, S. Subramaniam, J. Phys. Chem. 98 (1994) 5580–5586.  doi: 10.1021/j100072a028

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    3. [3]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    4. [4]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    5. [5]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    6. [6]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    7. [7]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    10. [10]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    11. [11]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    12. [12]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    13. [13]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    14. [14]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    15. [15]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    16. [16]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    17. [17]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    18. [18]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    19. [19]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

Metrics
  • PDF Downloads(1)
  • Abstract views(82)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return