Electrotunable interfacial friction: A brief review
-
* Corresponding author.
E-mail address: linwf@buaa.edu.cn (W. Lin).
Citation:
Yu Zhang, Weifeng Lin. Electrotunable interfacial friction: A brief review[J]. Chinese Chemical Letters,
;2025, 36(4): 110566.
doi:
10.1016/j.cclet.2024.110566
H. Liu, B. Yang, C. Wang, et al., Friction 11 (2023) 839–864.
doi: 10.1007/s40544-022-0639-0
W. Lin, J. Klein, Adv. Mater. 33 (2021) e2005513.
B.N.T. Persson, History of tribology, in: T. Mang (Ed. ), Encyclopedia of Lubricants and Lubrication, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 791–797.
Z. Zou, H. Li, K. Yu, et al., Exploration 3 (2023) 20220132.
V.P. Zhuravlev, Mech. Solids 48 (2013) 364–369.
B. Armstrong-Hélouvry, P. Dupont, C.C. De Wit, Automatica 30 (1994) 1083–1138.
Q.J. Wang, D. Zhu, Hertz theory: contact of spherical surfaces, in: Q.J. Wang, Y.W. Chung (Eds. ), Encyclopedia of Tribology, Springer US, Boston, 2013, pp. 1654–1662.
F.P. Bowden, L. Leben, Proc. R. Soc. London, Ser. A 169 (1939) 371–391.
F.P. Bowden, D. Tabor, Proc. R. Soc. London, Ser. A 169 (1939) 391–413.
J.A. Greenwood, Contact of rough surfaces, in: I.L. Singer, H.M. Pollock (Eds. ), Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer, Netherlands, Dordrecht, 1992, pp. 37–56.
E. Rabinowicz, Friction fluctuations, in: I.L. Singer, H.M. Pollock (Eds. ), Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer, Netherlands, Dordrecht, 1992, pp. 25–34.
O. Reynolds, Philos. Trans. R. Soc. London 177 (1997) 157–234.
B. Jacobson, Tribol. Int. 36 (2003) 781–789.
M. Kalin, I. Velkavrh, J. Vižintin, Wear 267 (2009) 1232–1240.
H.A. Spikes, Boundary lubrication and boundary films, in: D. Dowson, C.M. Taylor, T.H.C. Childs, M. Godet, G. Dalmaz (Eds. ), Tribology Series, Elsevier, 1993, pp. 331–346.
W.B. Hardy, I. Doubleday, Proc. R. Soc. London, Ser. A 100 (1997) 550–574.
B.N.J. Persson, Phys. Rev. B: Condens. Matter 48 (1993) 18140–18158.
J. Gao, W.D. Luedtke, D. Gourdon, et al., J. Phys. Chem. B 108 (2004) 3410–3425.
S.H. Loring, R.E. Brown, A. Gouldstone, J.P. Butler, J. Biomech. 38 (2005) 2390–2396.
Z. Xu, H. Tsai, H.L. Wang, M. Cotlet, J. Phys. Chem. B 114 (2010) 11746–11752.
doi: 10.1021/jp105032y
F.T. Limpoco, R.C. Advincula, S.S. Perry, Langmuir 23 (2007) 12196–12201.
doi: 10.1021/la701272a
M.T. Müller, X. Yan, S. Lee, et al., Macromolecules 38 (2005) 5706–5713.
doi: 10.1021/ma0501545
A. Dedinaite, E. Thormann, G. Olanya, et al., Soft Matter 6 (2010) 2489–2498.
doi: 10.1039/c003320k
Y. Wu, X. Pei, X. Wang, et al., NPG Asia Mater. 6 (2014) e136-e136.
Y. Wu, M. Cai, X. Pei, et al., Macromol. Rapid. Commun. 34 (2013) 1785–1790.
doi: 10.1002/marc.201300649
E.B. Zhulina, M. Rubinstein, Soft Matter 8 (2012) 9376–9383.
doi: 10.1039/c2sm25863c
Y. Higaki, M. Kobayashi, A. Takahara, Langmuir 36 (2020) 9015–9024.
doi: 10.1021/acs.langmuir.0c01672
D. Liu, D.J. Broer, Soft Matter 10 (2014) 7952–7958.
D. Liu, D.J. Broer, Angew. Chem. 126 (2014) 4630–4634.
doi: 10.1002/ange.201400370
J. Kang, X. Yang, X. Yang, et al., Chin. Chem. Lett. 35 (2024) 109297.
J.J. Blackstock, Z. Li, M.R. Freeman, D.R. Stewart, Surf. Sci. 546 (2003) 87–96.
N. Vogel, J. Zieleniecki, I. Koper, Nanoscale 4 (2012) 3820–3832.
doi: 10.1039/c2nr30434a
J. Wang, J. Li, L. Fang, et al., Tribol. Lett. 55 (2014) 405–412.
J. Liu, M. Miao, K. Jiang, et al., Nano Energy 48 (2018) 320–326.
H. Zeng, Y. Zhang, S. Mao, et al., J. Mater. Chem. C 5 (2017) 5877–5881.
C. Joachim, M.A. Ratner, Nanotechnology 15 (2004) 1065–1075.
P. Spitzer, S. Wunderli, K. Maksymiuk, et al., Reference electrodes for aqueous solutions, in: G. Inzelt, A. Lewenstam, F. Scholz (Eds. ), Handbook of Reference Electrodes, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 77–143.
N. Elgrishi, K.J. Rountree, B.D. McCarthy, et al., J. Chem. Educ. 95 (2017) 197–206.
F. Bresme, A.A. Kornyshev, S. Perkin, M. Urbakh, Nat. Mater. 21 (2022) 848–858.
doi: 10.1038/s41563-022-01273-7
B. Voigtländer, Atomic Force Microscopy, 2nd ed., Springer, Cham, Jülich, 2019.
Z. Zhang, S. Said, K. Smith, et al., Adv. Energy Mater. 11 (2021) 2101518.
G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56 (1986) 930–933.
Y.F. Dufrene, T. Ando, R. Garcia, et al., Nat. Nanotechnol. 12 (2017) 295–307.
doi: 10.1038/nnano.2017.45
R. Delalande, D. Garcia-Sanchez, L. Belliard, Phys. Rev. B: Condens. Matter 107 (2023) 085409.
D.F. Ogletree, R.W. Carpick, M. Salmeron, Rev. Sci. Instrum. 67 (1996) 3298–3306.
S.Y. Luchkin, M.A. Kirsanova, D.A. Aksyonov, et al., ACS Appl. Energy Mater. 5 (2022) 7758–7769.
doi: 10.1021/acsaem.2c01239
A. Jetybayeva, N. Schön, J. Oh, et al., ACS Appl. Energy Mater. 5 (2022) 1731–1742.
doi: 10.1021/acsaem.1c03173
L. Wang, A. Menakath, F. Han, et al., Nat. Chem. 11 (2019) 789–796.
doi: 10.1038/s41557-019-0304-z
C.L. Wirth, R.M. Rock, P.J. Sides, D.C. Prieve, Langmuir 27 (2011) 9781–9791.
doi: 10.1021/la2017038
P.B. Ishai, M.S. Talary, A. Caduff, et al., Meas. Sci. Technol. 24 (2013) 102001.
doi: 10.1088/0957-0233/24/10/102001
J.P. Badiali, J. Goodisman, J. Phys. Chem. 79 (1975) 223–232.
doi: 10.1021/j100570a007
T. Kamijo, M. Kasuya, M. Mizukami, K. Kurihara, Chem. Lett. 40 (2011) 674–675.
doi: 10.1246/cl.2011.674
Y. Liang, J.H.K. Pfisterer, D. McLaughlin, et al., Small Methods 3 (2019) 1800387.
J. Abbou, C. Demaille, M. Druet, J. Moiroux, Anal. Chem. 74 (2002) 6355–6363.
M.R. Nellist, F.A.L. Laskowski, J. Qiu, et al., Nat. Energy. 3 (2017) 46–52.
doi: 10.1038/s41560-017-0048-1
A. Anne, A. Chovin, C. Demaille, M. Lafouresse, Anal. Chem. 83 (2011) 7924–7932.
doi: 10.1021/ac201907v
E. Aleksandrova, R. Hiesgen, K.A. Friedrich, E. Roduner, Phys. Chem. Chem. Phys. 9 (2007) 2735–2743.
doi: 10.1039/b617516c
H. Lang, Y. Peng, G. Shao, et al., J. Mater. Chem. C 7 (2019) 6041–6051.
doi: 10.1039/c9tc01148j
C. Filoni, K. Wandelt, L. Marfori, et al., Appl. Surf. Sci. 611 (2023) 155542.
S. Li, F. Eghiaian, C. Sieben, et al., Biophys. J. 100 (2011) 637–645.
K. Engelhardt, E. Preis, U. Bakowsky, Methods. Mol. Biol. 2622 (2023) 253–263.
doi: 10.1007/978-1-0716-2954-3_23
K. Wieland, G. Ramer, V.U. Weiss, et al., Nano Res. 12 (2019) 197–203.
doi: 10.1007/s12274-018-2202-x
M.A. Lantz, S.J. O'Shea, M.E. Welland, K.L. Johnson, Phys. Rev. B: Condens. Matter 55 (1997) 10776–10785.
E. Aleksandrova, S. Hink, R. Hiesgen, E. Roduner, J. Phys. Condens. Matter 23 (2011) 234109.
doi: 10.1088/0953-8984/23/23/234109
G.E.A. Jacob, N. Israelachvili, J. Chem. Soc. Faraday Trans. 1 74 (1978) 975–1001.
L. Tsarkova, X. Zhang, N. Hadjichristidis, J. Klein, Macromolecules 40 (2007) 25392547.
J.N. Israelachvili, J. Colloid Interface Sci. 44 (1973) 259–272.
U. Raviv, S. Perkin, P. Laurat, J. Klein, Langmuir 20 (2004) 5322–5332.
D. Jin, Y. Hwang, L. Chai, et al., Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2113690119.
S. Perkin, L. Chai, N. Kampf, et al., Langmuir 22 (2006) 6142–6152.
doi: 10.1021/la053097h
J.K. Liraz Chai, Langmuir 23 (2007) 7777–7783.
C.D. van Engers, N.E.A. Cousens, V. Babenko, et al., Nano Lett. 17 (2017) 3815–3821.
doi: 10.1021/acs.nanolett.7b01181
J. Britton, N.E. Cousens, S.W. Coles, et al., Langmuir 30 (2014) 11485–11492.
doi: 10.1021/la5028493
W. Lin, J. Klein, Appl. Phys. Rev. 8 (2021) 031316.
R. Tivony, S. Safran, P. Pincus, et al., Nat. Commun. 9 (2018) 4203.
C.D. van Engers, M. Balabajew, A. Southam, S. Perkin, Rev. Sci. Instrum. 89 (2018) 123901.
M.T. Clarkson, J. Phys. D: Appl. Phys. 22 (1989) 475–482.
doi: 10.1088/0022-3727/22/4/001
C. Drummond, Phys. Rev. Lett. 109 (2012) 154302.
doi: 10.1103/PhysRevLett.109.154302
P.M. McGuiggan, J. Zhang, S.M. Hsu, Tribol. Lett. 10 (2001) 217–223.
J. Israelachvili, Y. Min, M. Akbulut, et al., Rep. Prog. Phys. 73 (2010) 036601.
doi: 10.1088/0034-4885/73/3/036601
C. Leriche, S. Franklin, B. Weber, Wear 498-499 (2022) 204284.
S. Korres, M. Dienwiebel, Rev. Sci. Instrum. 81 (2010) 063904.
L. Shi, V.I. Sikavitsas, A. Striolo, Ann. Biomed. Eng. 39 (2011) 132–146.
doi: 10.1007/s10439-010-0167-3
J. Wu, T. Liu, N. Yu, et al., Tribol. Lett. 69 (2021) 36.
M. Michalec, P. Svoboda, I. Krupka, et al., Friction 8 (2020) 982–994.
doi: 10.1007/s40544-019-0342-y
Y.P. Ding, R. Liu, L. Wang, et al., Prot. Met. Phys. Chem. Surf. 56 (2020) 392–404.
doi: 10.1134/s2070205120020069
S. Kawada, S. Ogawa, S. Sasaki, M. Miyatake, Tribol. Online. 14 (2019) 71–77.
doi: 10.2474/trol.14.71
S. Radice, T. Holcomb, R. Pourzal, et al., Biotribology 18 (2019) 100090.
B. Weber, T. Suhina, T. Junge, et al., Nat. Commun. 9 (2018) 888.
F. Mangolini, A. Rossi, N.D. Spencer, Tribol. Lett. 45 (2011) 207–218.
G. Greenwood, J.M. Kim, S.M. Nahid, et al., Nat. Commun. 14 (2023) 5801.
B. Shi, X. Gan, K. Yu, et al., npg 2D Mater. Appl. 6 (2022) 39.
J.N. Israelachvili, J. Colloid Interface Sci. 110 (1986) 263–271.
J.M. Gregoire, D. Dale, A. Kazimirov, et al., Rev. Sci. Instrum. 80 (2009) 123905.
U. Raviv, P. Laurat, J. Klein, Nature 413 (2001) 51–54.
U. Raviv, S. Giasson, J. Frey, J. Klein, J. Phys. Condens. Matter 14 (2002) 9275–9283.
Y. Leng, J. Phys. Condens. Matter 20 (2008) 354017.
doi: 10.1088/0953-8984/20/35/354017
Y. Leng, P.T. Cummings, Hydration Structure and Shear Viscosity of Water Nanoconfined Between Mica Surfaces (2006) 505–510.
N. Kavokine, M.L. Bocquet, L. Bocquet, Nature 602 (2022) 84–90.
doi: 10.1038/s41586-021-04284-7
E.N.D.C. Andrade, C. Dodd, Proc. R. Soc. London, Ser. A 187 (1997) 296–337.
E.N.D.C. Andrade, C. Dodd, Nature 143 (1939) 26–27.
doi: 10.1038/143026a0
R.J. Hunter, J. Leyendekkers, J. Chem. Soc., Faraday Trans. 1 74 (1978) 450–455.
E.N.D.C. Andrade, C. Dodd, Proc. R. Soc. London, Ser. A 204 (1997) 449–464.
S. Li, P. Bai, Y. Li, et al., Friction 9 (2020) 513–523.
doi: 10.3390/e22050513
L. Ma, A. Gaisinskaya-Kipnis, N. Kampf, J. Klein, Nat. Commun. 6 (2015) 6060.
A. Gaisinskaya-Kipnis, L. Ma, N. Kampf, J. Klein, Langmuir 32 (2016) 4755–4764.
doi: 10.1021/acs.langmuir.6b00707
L. Pashazanusi, M. Oguntoye, S. Oak, et al., Langmuir 34 (2018) 801–806.
doi: 10.1021/acs.langmuir.7b03023
L. Pashazanusi, K. Kristiansen, S. Li, et al., Front. Mech. Eng. 5 (2019), doi: 10.3389/fmech.2019.00039.
doi: 10.3389/fmech.2019.00039
R.M. Pashley, J.N. Israelachvili, J. Colloid Interface Sci. 97 (1984) 446–455.
U. Raviv, J. Klein, Science 297 (2002) 1540.
Z. Li, Q. Liu, D. Zhang, et al., Nanoscale Horiz. 7 (2022) 368–375.
doi: 10.1039/d1nh00564b
T. Han, C. Zhang, J. Luo, Langmuir 34 (2018) 11281–11291.
doi: 10.1021/acs.langmuir.8b01722
T. Han, C. Zhang, J. Li, et al., J. Phys. Chem. Lett. 11 (2019) 184–190.
P. Ma, Y. Liu, K. Han, et al., Friction 12 (2023) 591–605.
doi: 10.56028/aetr.7.1.591.2023
T. Han, W. Cao, Z. Xu, et al., Sci. Adv. 9 (2023) eadf3902.
S. Jahn, J. Seror, J. Klein, Annu. Rev. Biomed. Eng. 18 (2016) 235–258.
doi: 10.1146/annurev-bioeng-081514-123305
J. Klein, Friction 1 (2013) 1–23.
Z. Li, Q. Liu, Q. Li, M. Dong, Nano Res. 16 (2022) 1096–1100.
J. Li, C. Zhang, P. Cheng, et al., Langmuir 32 (2016) 5593–5599.
doi: 10.1021/acs.langmuir.6b01237
N. Kampf, C. Wu, Y. Wang, J. Klein, Langmuir 32 (2016) 11754–11762.
doi: 10.1021/acs.langmuir.6b02657
M. Chen, W.H. Briscoe, S.P. Armes, J. Klein, Science 323 (2009) 1698.
doi: 10.1126/science.1169399
O. Tairy, N. Kampf, M.J. Driver, et al., Macromolecules 48 (2015) 140–151.
doi: 10.1021/ma5019439
R. Sorkin, Y. Dror, N. Kampf, J. Klein, Langmuir 30 (2014) 5005–5014.
doi: 10.1021/la500420u
R. Goldberg, A. Schroeder, Y. Barenholz, J. Klein, Biophys. J. 100 (2011) 2403–2411.
Y. Cao, N. Kampf, W. Lin, J. Klein, Soft Matter 16 (2020) 3973–3980.
doi: 10.1039/d0sm00215a
W. Lin, M. Kluzek, N. Iuster, et al., Science 370 (2020) 335–338.
doi: 10.1126/science.aay8276
P. Ma, Y. Liu, Y. Tian, L. Ma, Colloids Surf. A 660 (2023) 130862.
R. Tivony, Y. Zhang, J. Klein, J. Phys. Chem. C 125 (2021) 3616–3622.
doi: 10.1021/acs.jpcc.0c11264
T. Gao, J. Li, S. Yi, J. Luo, J. Phys. Chem. C 124 (2020) 23745–23751.
doi: 10.1021/acs.jpcc.0c07358
R.D. Rogers, K.R. Seddon, Science 302 (2003) 792–793.
O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, ACS Nano 11 (2017) 6825–6831.
doi: 10.1021/acsnano.7b01835
X. Gong, L. Li, Chin. Chem. Lett. 28 (2017) 2045–2052.
R.M. Espinosa-Marzal, A. Arcifa, A. Rossi, N.D. Spencer, J. Phys. Chem. C 118 (2014) 6491–6503.
doi: 10.1021/jp5000123
R.M. Espinosa-Marzal, A. Arcifa, A. Rossi, N.D. Spencer, J. Phys. Chem. Lett. 5 (2014) 179–184.
doi: 10.1021/jz402451v
D. Zheng, X. Wang, M. Zhang, C. Ju, Tribol. Lett. 67 (2019) 47.
H. Khanmohammadi, W. Wijanarko, N. Espallargas, Tribol. Lett. 68 (2020) 130.
A. Khan, O.P. Sharma, O.P. Khatri, Ind. Eng. Chem. Res. 60 (2020) 333–342.
R. Gusain, A. Khan, O.P. Khatri, J. Mol. Liq. 301 (2020) 112322.
R. González, D. Ramos, D. Blanco, et al., Friction 7 (2018) 282–288.
W. Lin, N. Kampf, J. Klein, ACS Nano 14 (2020) 7008–7017.
doi: 10.1021/acsnano.0c01559
T. Gao, J. Li, W. Wang, J. Luo, Friction 11 (2022) 513–523.
doi: 10.1001/jamaoncol.2021.7249
S. He, Y. Meng, Y. Tian, Tribol. Lett. 41 (2010) 485–494.
F. Gatti, T. Amann, A. Kailer, et al., Sci. Rep. 10 (2020) 17634.
G.A. Pilkington, A. Oleshkevych, P. Pedraz, et al., Phys. Chem. Chem. Phys. 22 (2020) 19162–19171.
doi: 10.1039/d0cp02736g
Z. Wang, L. Zhu, L. Si, et al., J. Mater. Eng. Perform. 29 (2020) 5718–5727.
doi: 10.1007/s11665-020-05073-5
W. Huang, L. Kong, X. Wang, Tribol. Lett. 65 (2016) 17.
C.S. Perez-Martinez, T.S. Groves, S. Perkin, J. Phys. Condens. Matter 33 (2021) 31LT02.
doi: 10.1088/1361-648x/ac03d3
Y. Zhang, C. Wang, L. Shi, et al., Intelligent friction testing for lubricating properties of ionic liquids under an external electric field, in: 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), 2022, pp. 989–993.
S. Perkin, T. Albrecht, J. Klein, Phys. Chem. Chem. Phys. 12 (2010) 1243–1247.
B. Rotenberg, M. Salanne, J. Phys. Chem. Lett. 6 (2015) 4978–4985.
doi: 10.1021/acs.jpclett.5b01889
G. Krämer, R. Bennewitz, J. Phys. Chem. C 123 (2019) 28284–28290.
doi: 10.1021/acs.jpcc.9b09058
F. Nemoto, M. Kofu, M. Nagao, et al., J. Chem. Phys. 149 (2018) 054502.
C. Hardacre, J.D. Holbrey, C.L. Mullan, et al., J. Chem. Phys. 133 (2010) 074510.
H.K. Kashyap, C.S. Santos, H.V. Annapureddy, et al., Faraday Discuss. 154 (2012) 133–143.
S. Perkin, Phys. Chem. Chem. Phys. 14 (2012) 5052–5062.
doi: 10.1039/c2cp23814d
S. Perkin, L. Crowhurst, H. Niedermeyer, et al., Chem. Commun. 47 (2011) 6572–6574.
doi: 10.1039/c1cc11322d
O. Werzer, E.D. Cranston, G.G. Warr, et al., Phys. Chem. Chem. Phys. 14 (2012) 5147–5152.
C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508.
T. Yamaguchi, S. Miyake, S. Koda, J. Phys. Chem. B 114 (2010) 8126–8133.
doi: 10.1021/jp1024137
H. Li, R.J. Wood, M.W. Rutland, R. Atkin, Chem. Commun. 50 (2014) 4368–4370.
doi: 10.1039/c4cc00979g
J. Sweeney, F. Hausen, R. Hayes, et al., Phys. Rev. Lett. 109 (2012) 155502.
doi: 10.1103/PhysRevLett.109.155502
H. Li, M.W. Rutland, M. Watanabe, R. Atkin, Faraday Discuss. 199 (2017) 311–322.
O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, J. Phys. Chem. Lett. 6 (2015) 3998–4004.
doi: 10.1021/acs.jpclett.5b01802
S. Di Lecce, A.A. Kornyshev, M. Urbakh, F. Bresme, Phys. Chem. Chem. Phys. 23 (2021) 22174–22183.
doi: 10.1039/d1cp03345j
K. Pivnic, O.Y. Fajardo, F. Bresme, et al., J. Phys. Chem. C 122 (2018) 5004–5012.
doi: 10.1021/acs.jpcc.8b00516
S. Di Lecce, A.A. Kornyshev, M. Urbakh, F. Bresme, ACS Appl. Mater. Interfaces 12 (2020) 4105–4113.
doi: 10.1021/acsami.9b19283
Y. Zhang, D. Jin, R. Tivony, et al., Nat. Mater. 23 (2024) 1720–1727.
doi: 10.1038/s41563-024-01926-9
J.K. Di Jin, ArXiv (2023) arXiv: 2303.08555v08555, doi:
D. Jin, Y. Zhang, J. Klein, ArXiv (2023) arXiv: 2303.08551v08552, doi:
J.Y. Park, D.F. Ogletree, P.A. Thiel, M. Salmeron, Science 313 (2006) 186-186.
A. Song, R. Shi, H. Lu, et al., Nano Lett. 22 (2022) 1889–1896.
doi: 10.1021/acs.nanolett.1c04116
F. He, X. Yang, Z. Bian, et al., Small 15 (2019) e1904613.
P. Zhu, H. Peng, G. Zhao, N. Chen, Rev. Sci. Instrum. 92 (2021) 055002.
D. Choi, S. Lee, S. Kim, et al., Scr. Mater. 58 (2008) 870–873.
Y. Meng, H. Jiang, P.L. Wong, Tribol. Trans. 44 (2001) 567–574.
doi: 10.1080/10402000108982496
N.P. Brandon, R.J.K. Wood, Wear 170 (1993) 33–38.
H. Jiang, P.L. Wong, Y. Meng, S. Wen, Lubrication Science 15 (2003) 275–292.
doi: 10.1002/ls.3010150307
Y. Meng, B. Hu, Q. Chang, Wear 260 (2006) 305–309.
P. Snapp, J.M. Kim, C. Cho, et al., NPG Asia Mater. 12 (2020) 22.
F. Hausen, J.A. Zimmet, R. Bennewitz, Surf. Sci. 607 (2013) 20–24.
A. Labuda, F. Hausen, N.N. Gosvami, et al., Langmuir 27 (2011) 2561–2566.
doi: 10.1021/la104497t
M. Valtiner, X. Banquy, K. Kristiansen, et al., Langmuir 28 (2012) 13080–13093.
doi: 10.1021/la3018216
M. Valtiner, K. Kristiansen, G.W. Greene, J.N. Israelachvili, Adv. Mater. 23 (2011) 2294–2299.
doi: 10.1002/adma.201003709
S.H. Donaldson, M. Valtiner, M.A. Gebbie, et al., Soft Matter 9 (2013) 5231–5238.
doi: 10.1039/c3sm27217f
Z. -L. Cheng, L. Ma, Z. Liu, Chin. Chem. Lett. 32 (2021) 583–586.
X. Ge, Z. Chai, Q. Shi, et al., Friction 11 (2023) 1953–1973.
doi: 10.1007/s40544-022-0681-y
M. Rejhon, F. Lavini, A. Khosravi, et al., Nat. Nanotechnol. 17 (2022) 1280–1287.
doi: 10.1038/s41565-022-01237-7
M. Ruths, N.A. Alcantar, J.N. Israelachvili, J. Phys. Chem. B 107 (2003) 11149–11157.
J.E. Houston, H.I. Kim, Acc. Chem. Res. 35 (2002) 547–553.
N.J. Brewer, B.D. Beake, G.J. Leggett, Langmuir 17 (2001) 1970–1974.
M.B. Elinski, B.D. Menard, Z. Liu, J.D. Batteas, J. Phys. Chem. C 121 (2017) 5635–5641.
doi: 10.1021/acs.jpcc.7b00012
J. Li, W. Cao, J. Li, M. Ma, J. Colloid. Interface. Sci. 596 (2021) 44–53.
doi: 10.15586/qas.v13i4.968
K. Ahmad, Q. Yang, A. Martini, Langmuir 38 (2022) 6273–6280.
doi: 10.1021/acs.langmuir.1c03234
Q. Yang, W. Nanney, X. Hu, et al., Tribol. Lett. 68 (2020) 63.
J. Lahann, S. Mitragotri, T. -N. Tran, et al., Science 299 (2003) 371–374.
K.S.K. Karuppiah, Y. Zhou, L.K. Woo, S. Sundararajan, Langmuir 25 (2009) 12114–12119.
doi: 10.1021/la901221g
M. Luo, A. Amegashie, A. Chua, et al., J. Phys. Chem. C 116 (2012) 13964–13971.
doi: 10.1021/jp3020996
P. Bhadra, S.W.I. Siu, Langmuir 37 (2021) 1913–1924.
doi: 10.1021/acs.langmuir.0c03414
S.T. Milner, Science 251 (1991) 905–914.
doi: 10.1126/science.251.4996.905
J. Klein, E. Kumacheva, D. Mahalu, et al., Nature 370 (1994) 634–636.
M. Chen, W.H. Briscoe, S.P. Armes, et al., ChemPhysChem 8 (2007) 1303–1306.
doi: 10.1002/cphc.200700131
P.A. Schorr, T.C.B. Kwan, S.M. Kilbey, et al., Macromolecules 36 (2003) 389–398.
K. Ohno, T. Sakamoto, T. Minagawa, Y. Okabe, Macromolecules 40 (2007) 723–730.
doi: 10.1021/ma0613234
H. Sakata, M. Kobayashi, H. Otsuka, A. Takahara, Polym. J. 37 (2005) 767–775.
doi: 10.1295/polymj.37.767
E. Eiser, J. Klein, T.A. Witten, L.J. Fetters, Phys. Rev. Lett. 82 (1999) 5076–5079.
J. Klein, E. Kumacheva, D. Perahia, L.J. Fetters, Acta Polym. 49 (1998) 617–625.
S. Feng, Y. Liu, J. Li, S. Wen, Macromolecules 54 (2021) 5719–5727.
doi: 10.1021/acs.macromol.1c00430
V. Adibnia, M. Olszewski, G. De Crescenzo, et al., J. Am. Chem. Soc. 142 (2020) 14843–14847.
doi: 10.1021/jacs.0c07215
M. Chen, H. Briscoe Wuge, P. Armes Steven, J. Klein, Science 323 (2009) 1698–1701.
doi: 10.1126/science.1169399
U. Raviv, S. Giasson, N. Kampf, et al., Nature 425 (2003) 163–165.
U. Raviv, S. Giasson, N. Kampf, et al., Langmuir 24 (2008) 8678–8687.
doi: 10.1021/la7039724
Y. Zhang, W. Zhao, X. Zhao, et al., Friction 12 (2024) 1757–1770.
W. Zhao, Y. Zhang, X. Zhao, et al., Adv. Sci. (2024) e2401000.
Y. Zhang, W. Zhao, S. Ma, et al., Nat. Commun. 13 (2022) 377.
D.C. Grahame, Chem. Rev. 41 (1947) 441–501.
doi: 10.1021/cr60130a002
J.N. Israelachvili, Intermolecular and Surface Forces, Elsevier, Singapore, 2011.
H. Ouyang, Z. Xia, J. Zhe, Nanotechnology 20 (2009) 195703.
doi: 10.1088/0957-4484/20/19/195703
S. Sun, G. Yin, Y.K. Lee, et al., Biochem. Biophys. Res. Commun. 404 (2011) 684–688.
H. Ding, C. Duan, C. Tong, J. Chem. Phys. 146 (2017) 034901.
G. Kasparyan, J.S. Hub, J. Chem. Theory. Comput. 19 (2023) 2676–2683.
doi: 10.1021/acs.jctc.3c00065
R.A. Bockmann, B.L. de Groot, S. Kakorin, et al., Biophys. J. 95 (2008) 1837–1850.
doi: 10.1529/biophysj.108.129437
R. Tivony, J. Klein, Faraday Discuss. 199 (2017) 261–277.
S.L.C. Drew McCormack, Derek Y.C. Chan, J. Colloid Interface Sci. 169 (1995) 177–196.
S.L. Carnie, D.Y.C. Chan, J. Colloid Interface Sci. 155 (1993) 297–312.
S.L. Carnie, D.Y.C. Chan, J.S. Gunning, Langmuir 10 (1994) 2993–3009.
doi: 10.1021/la00021a024
R. Tivony, N. Iuster, J. Klein, Langmuir 32 (2016) 7346–7355.
doi: 10.1021/acs.langmuir.6b01697
R. Tivony, D.B. Yaakov, G. Silbert, J. Klein, Langmuir 31 (2015) 12845–12849.
doi: 10.1021/acs.langmuir.5b03326
M.J. Holst, F. Saied, J. Comput. Chem. 16 (1995) 337–364.
doi: 10.1002/jcc.540160308
A.E. James, D.J.A. Williams, J. Colloid Interface Sci. 107 (1985) 44–59.
S.L. Carnie, D.Y.C. Chan, J. Colloid Interface Sci. 161 (1993) 260–264.
V.E. Shubin, P. Kékicheff, J. Colloid Interface Sci. 155 (1993) 108–123.
G. Trefalt, S.H. Behrens, M. Borkovec, Langmuir 32 (2016) 380–400.
doi: 10.1021/acs.langmuir.5b03611
I. Popa, G. Gillies, G. Papastavrou, M. Borkovec, J. Phys. Chem. B 114 (2010) 3170–3177.
doi: 10.1021/jp911482a
P.M. Biesheuvel, M. van der Veen, W. Norde, J. Phys. Chem. B 109 (2005) 4172–4180.
doi: 10.1021/jp0463823
W. Rocchia, E. Alexov, B. Honig, J. Phys. Chem. B 105 (2001) 6507–6514.
A. Nicholls, B. Honig, J. Comput. Chem. 12 (1991) 435–445.
doi: 10.1002/jcc.540120405
K.E. Forsten, R.E. Kozack, D.A. Lauffenburger, S. Subramaniam, J. Phys. Chem. 98 (1994) 5580–5586.
doi: 10.1021/j100072a028
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Fanghua Zhang , Yuyan Li , Hongyan Zhang , Wendong Liu , Zhe Hao , Mingzheng Shao , Ruizhong Zhang , Xiyan Li , Libing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848
Shunyu Wang , Yanan Zhu , Yang Zhao , Wanli Nie , Hong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Yukai Tong , Zhijun Wu , Bo Zhou , Min Hu , Anpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100