Citation: Junyi Yu, Yin Cheng, Anhong Cai, Xianfeng Huang, Qingrui Zhang. Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes[J]. Chinese Chemical Letters, ;2025, 36(2): 110549. doi: 10.1016/j.cclet.2024.110549 shu

Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes

    * Corresponding authors.
    E-mail addresses: xianfeng_huang@wzu.edu.cn (X. Huang), zhangqr@ysu.edu.cn (Q. Zhang).
  • Received Date: 8 January 2024
    Revised Date: 11 October 2024
    Accepted Date: 13 October 2024
    Available Online: 14 October 2024

Figures(6)

  • Herein, the Cu(Ⅲ) synthesized from copper plating effluent was developed for the first time to evaluate the onsite degradation performance of heavy metal complexes in the wastewater, thus achieving the purpose of "treating waste with waste". The results indicated that synthetic Cu(Ⅲ) presented the excellent decomplexation performance for Cu(Ⅱ)/Ni(Ⅱ)-organic complexes. The removal efficiency of Cu(Ⅱ)/Ni(Ⅱ)-EDTA significantly increased with increasing Cu(Ⅲ) dosage, and the degradation of Cu(Ⅱ)/Ni(Ⅱ)-EDTA by synthetic Cu(Ⅲ) system displayed highly pH-dependent reactivity. The radical quencher experiments confirmed that Cu(Ⅲ) direct oxidation were mainly involved in the degradation of Cu(Ⅱ)-EDTA. Additionally, the continuous decarboxylation process was proven to be the main degradation pathway of Cu(Ⅱ)-EDTA in Cu(Ⅲ) system. The coexisting substances (SO42−, Cl and fulvic acids) showed little impacts at low level for the removal of Cu(Ⅱ)/Ni(Ⅱ)-EDTA, while retarded the degradation of Cu(Ⅱ)-EDTA slightly at high level, which features high selective oxidation. Encouragingly, it was also effective to remove Cu(Ⅱ)/Ni(Ⅱ)-EDTA from in treating actual Cu/Ni-containing wastewater through synthetic Cu(Ⅲ) treatment.
  • 加载中
    1. [1]

      D. Yuan, C. Zhang, S. Tang, et al., Chin. Chem. Lett. 32 (2021) 3387–3392.

    2. [2]

      Y. Ye, P. Yang, Y. Deng, et al., Chin. Chem. Lett. 33 (2022) 3127–3132.

    3. [3]

      Z. Xu, Q. Zhang, X.C. Li, X.F. Huang, Chem. Eng. J. 429 (2022) 131688.

    4. [4]

      L. Song, S. Jing, Y. Qiu, F. Liu, A. Li, Chin. Chem. Lett. 34 (2023) 107180.

    5. [5]

      S. Wang, M.R. Razanajatovo, X. Du, et al., Chin. Chem. Lett. 35 (2024) 109140.

    6. [6]

      L. Zhang, B. Wu, G. Zhang, Y. Gan, S. Zhang, Chem. Eng. J. 358 (2019) 1218–1226.

    7. [7]

      J. Du, B. Zhang, J. Li, B. Lai, Chin. Chem. Lett. 31 (2020) 2575–2582.

    8. [8]

      H. Tian, X. Wang, R. Pan, et al., Environ. Sci. Pollut. Res. 30 (2023) 62733–62743.  doi: 10.1007/s11356-023-26594-1

    9. [9]

      J. Zhao, X. Hu, L. Kong, X. Peng, J. Hazard. Mater. 465 (2024) 133131.

    10. [10]

      X. Huang, X. Wang, D.X. Guan, et al., Environ. Sci. Pollut. Res. 26 (2019) 8516–8524.  doi: 10.1007/s11356-018-04091-0

    11. [11]

      C. Chen, A. Chen, X. Huang, et al., J. Clean. Prod. 298 (2021) 126837.

    12. [12]

      B. Thalmann, U. von Gunten, R. Kaegi, Water Res. 134 (2018) 170–180.

    13. [13]

      L. Wu, S. Garg, J. Xie, et al., Environ. Sci. Technol. 57 (2023) 12476–12488.  doi: 10.1021/acs.est.3c02550

    14. [14]

      C. Chen, P. Liu, Y. Li, et al., Water Res. 218 (2022) 118502.

    15. [15]

      J. Du, T.D. Waite, P.M. Biesheuvel, W. Tang, J. Hazard. Mater. 442 (2023) 130023.

    16. [16]

      Y. Liu, J. Li, B. Zhou, et al., Environ. Chem. Lett. 7 (2009) 363–368.  doi: 10.1007/s10311-008-0180-z

    17. [17]

      Z. Xu, C. Shan, B. Xie, Y. Liu, B. Pan, Appl. Catal. B 200 (2017) 439–447.

    18. [18]

      S. Lan, Y. Xiong, S. Tian, J. Feng, T. Xie, Appl. Catal. B 183 (2016) 371–376.

    19. [19]

      Z. Wang, J. Li, W. Song, X. Zhang, J. Song, Water Sci. Technol. 79 (2019) 589–596.  doi: 10.2166/wcc.2018.167

    20. [20]

      C. Durante, A.A. Isse, G. Sandona, A. Gennaro, Chemosphere 78 (2010) 620–625.

    21. [21]

      Z. Yang, J. Qian, C. Shan, et al., Environ. Sci. Technol. 55 (2021) 14494–14514.  doi: 10.1021/acs.est.1c05862

    22. [22]

      M. Li, S. You, X. Duan, Y. Liu, Appl. Catal. B 312 (2022) 121419.

    23. [23]

      J. Li, A.N. Pham, R. Dai, Z. Wang, T.D. Waite, J. Hazard. Mater. 392 (2020) 122261.

    24. [24]

      F.E.K. Okaikue-Woodi, J.R. Ray, J. Mater. Chem. A 11 (2023) 13552–13563.  doi: 10.1039/d3ta01950k

    25. [25]

      S. Li, R. Zheng, Y. Zhou, et al., ACS ES&T Water 3 (2023) 488–499.

    26. [26]

      Y. Wang, Y. Wu, Y. Yu, et al., Water Res. 186 (2020) 116326.

    27. [27]

      S. Sun, C. Shan, Z. Yang, S. Wang, B. Pan, Environ. Sci. Technol. 56 (2021) 634–641.

    28. [28]

      C. Li, V. Goetz, S. Chiron, J. Environ. Chem. Eng. 9 (2021) 105145.

    29. [29]

      Y. Feng, W. Qing, L. Kong, et al., Water Res. 149 (2019) 1–8.

    30. [30]

      J. Chen, X. Zhou, P. Sun, Y. Zhang, C.H. Huang, Environ. Sci. Technol. 53 (2019) 11774–11782.  doi: 10.1021/acs.est.9b03873

    31. [31]

      K. McCann, D.M. Brigham, S. Morrison, J.C. Braley, Inorg. Chem. 55 (2016) 11971–11978.  doi: 10.1021/acs.inorgchem.6b02120

    32. [32]

      J.S.D. Jeremias, J.Y. Lin, M.L.P. Dalida, M.C. Lu, J. Environ. Chem. Eng. 11 (2023) 109336.

    33. [33]

      C. Ling, Y. Zhao, Z. Ren, et al., Chin. Chem. Lett. 30 (2019) 2196–2200.

    34. [34]

      J. Yu, W. Deng, X. Huang, et al., J. Hazard. Mater. 465 (2024) 133521.

    35. [35]

      M.C. Collivignarelli, A. Abbà, M. Bestetti, B.M. Crotti, M.C. Miino, Water Air Soil Pollut. 230 (2019) 101.

    36. [36]

      D. Chen, C. Zhang, H. Rong, M. Zhao, S. Gou, Sep. Purif. Technol. 234 (2020) 116043.

    37. [37]

      G.V. Buxton, Q.G. Mulazzani, A.B. Ross, J. Phys. Chem. Ref. Data 24 (1995) 1055–1349.  doi: 10.1063/1.555966

    38. [38]

      Z. Wang, Q. Liu, F. Yang, et al., Environ. Int. 132 (2019) 105128.

    39. [39]

      X. Huang, Y. Wang, X. Li, et al., Environ. Sci. Technol. 53 (2019) 2036–2044.  doi: 10.1021/acs.est.8b05346

    40. [40]

      Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, ACS Catal. 6 (2016) 2473–2481.  doi: 10.1021/acscatal.6b00205

    41. [41]

      Q. Zhao, X. Zhang, D. Huang, et al., Chemosphere 284 (2021) 131329.

    42. [42]

      D.G. Brown, U. Weser, Inorg. Chem. 19 (1980) 264–266.  doi: 10.1021/ic50203a055

    43. [43]

      L. Wang, H. Xu, N. Jiang, et al., Environ. Sci. Technol. 54 (2020) 4686–4694.  doi: 10.1021/acs.est.0c00284

    44. [44]

      N. Li, T. Liu, S. Xiao, et al., J. Hazard. Mater. 445 (2023) 130536.

    45. [45]

      T. Wang, H. Zhang, A. Cai, et al., J. Environ. Manag. 370 (2024) 122798.

    46. [46]

      M. Deborde, U. Von Gunten, Water Res. 42 (2008) 13–51.

    47. [47]

      Y. Liu, Y. Yang, A. Li, et al., Appl. Catal. B 345 (2024) 123717.

    48. [48]

      Z. Guan, Y. Guo, Z. Huang, et al., Chem. Eng. J. 428 (2022) 131250.

  • 加载中
    1. [1]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    2. [2]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    3. [3]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    6. [6]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    10. [10]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    11. [11]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    12. [12]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    13. [13]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    14. [14]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    15. [15]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    16. [16]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    17. [17]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    18. [18]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    19. [19]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    20. [20]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

Metrics
  • PDF Downloads(0)
  • Abstract views(167)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return