Advances in photocatalytic deracemization of sp3-hybridized chiral centers via hydrogen atom transfer
-
* Corresponding author.
E-mail address: jjcheng@fzu.edu.cn (J. Cheng).
Citation:
Yuan Liu, Zhu Yin, Xintuo Yang, Jiajia Cheng. Advances in photocatalytic deracemization of sp3-hybridized chiral centers via hydrogen atom transfer[J]. Chinese Chemical Letters,
;2025, 36(5): 110521.
doi:
10.1016/j.cclet.2024.110521
J. Ye, M. Zhao, J. Liu, W. Liu, Environ. Pollut. 158 (2010) 2371–2383.
doi: 10.1016/j.envpol.2010.03.014
N. Arbell, K. Bauer, Y. Paz, ACS Appl. Mater. Interfaces 13 (2021) 39781–39790.
doi: 10.1021/acsami.1c12216
O. Långvik, T. Saloranta, A. Kirilin, A. Liljeblad, P. Mäki-Arvela, ChemCatChem 2 (2010) 1615–1621.
doi: 10.1002/cctc.201000161
V. Bhat, E.R. Welin, X.L. Guo, B.M. Stoltz, Chem. Rev. 117 (2017) 4528–4561.
doi: 10.1021/acs.chemrev.6b00731
J. Zhang, Z. Zheng, C. Zhu, Chin. Chem. Lett. 35 (2024) 109160.
doi: 10.1016/j.cclet.2023.109160
R. Azerad, D. Buisson, Curr. Opin. Biotechnol. 11 (2000) 565–571.
doi: 10.1016/S0958-1669(00)00144-0
C.C. Gruber, I. Lavandera, K. Faber, W. Kroutil, Adv. Synth. Catal. 348 (2006) 1789–1805.
doi: 10.1002/adsc.200606158
M. Guillot, J. de Meester, S. Huynen, et al., Angew. Chem. Int. Ed. 59 (2020) 11303–11306.
doi: 10.1002/anie.202002464
K. Faber, Chem. Eur. J. 7 (2001) 4985–5232.
doi: 10.1002/1521-3765(20011203)7:23<4985::AID-CHEM4985>3.0.CO;2-X
D.G. Blackmond, Angew. Chem. Int. Ed. 48 (2009) 2648–2654.
doi: 10.1002/anie.200804566
C. Viedma, P. Cintas, Chem. Commun. 47 (2011) 12786–12788.
doi: 10.1039/c1cc14857e
F. Breveglieri, G.M. Maggioni, M. Mazzotti, M. Cryst, Growth Des. 18 (2018) 1873–1881.
doi: 10.1021/acs.cgd.7b01746
S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36 (2003) 255–263.
doi: 10.1021/ar020230d
S.P. Louh, I.C. Leu, M.H. Hon, Diam. Relat. Mater. 14 (2005) 1005–1009.
doi: 10.1016/j.diamond.2004.11.023
Y. Wang, X. Hu, C.A. Morales-Rivera, et al., J. Am. Chem. Soc. 140 (2018) 9678–9684.
doi: 10.1021/jacs.8b05753
I. Chibata, T. Tosa, R. Sano, J. Appl. Microbiol. 13 (1965) 618–624.
doi: 10.1128/am.13.4.618-624.1965
M. Costas, M. Bietti, Acc. Chem. Res. 51 (2018) 2601–2602.
doi: 10.1021/acs.accounts.8b00525
M. Fagnoni, D. Dondi, D. Ravelli, A. Albini, Chem. Rev. 107 (2007) 2725–2756.
doi: 10.1021/cr068352x
J.L. Tu, A.M. Hu, L. Guo, W.J. Xia, J. Am. Chem. Soc. 145 (2023) 7600–7611.
doi: 10.1021/jacs.3c01082
F.S. Meger, J.A. Murphy, F. Aldabbagh, Molecules 28 (2023) 6217.
doi: 10.3390/molecules28176217
M. Leone, J.P. Milton, D. Gryko, L. Neuville, G. Masson, Chem. Eur. J. 30 (2024) 1521–3765.
G.Q. Xu, W.D. Wang, P.F. Xu, J. Am. Chem. Soc. 146 (2024) 1209–1223.
doi: 10.1021/jacs.3c06169
J.H. Wang, X.X. Lv, Z.Y. Jiang, Chem. Eur. J. 29 (2023) e202204029.
doi: 10.1002/chem.202204029
Y. Su, Y. Zou, W. Xiao, Chin. J. Org. Chem. 42 (2022) 3201–3212.
doi: 10.6023/cjoc202207046
F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 52 (2009) 6752–6756.
doi: 10.1021/jm901241e
A. Albini, V. Dichiarante, Photochem. Photobiol. Sci. 8 (2009) 248–254.
doi: 10.1039/b806756b
J. Grosskopf, M. Plaza, A. Seitz, et al., J. Am. Chem. Soc. 143 (2021) 21241–21245.
doi: 10.1021/jacs.1c11266
J. Grosskopf, A.A. Heidecker, T. Bach, Angew. Chem. Int. Ed. 62 (2023) e202305274.
doi: 10.1002/anie.202305274
R.J. Kutta, J. Grosskopf, N. van Staalduinen, et al., J. Am. Chem. Soc. 145 (2023) 2354–2363.
doi: 10.1021/jacs.2c11265
C.J. Oswood, D.W.C. MacMillan, J. Am. Chem. Soc. 144 (2022) 93–98.
doi: 10.1021/jacs.1c11552
L.A. Combswalker, C.L. Hill, J. Am. Chem. Soc. 114 (1992) 938–946.
doi: 10.1021/ja00029a022
Y.A. Zhang, V. Palani, A.E. Seim, et al., Science 378 (2022) 383–389.
doi: 10.1126/science.add6852
S. Maity, S. Hoz, Eur. J. Org. Chem. 2021 (2021) 1103–1112.
doi: 10.1002/ejoc.202001438
H. Hao, X.T. Qi, W.P. Tang, P. Liu, Org. Lett. 23 (2021) 4411–4414.
doi: 10.1021/acs.orglett.1c01351
G.A. DiLabio, E.R. Johnson, J. Am. Chem. Soc. 129 (2007) 6199–6203.
doi: 10.1021/ja068090g
N.Y. Shin, J.M. Ryss, X. Zhang, S.J. Miller, R.R. Knowles, Science 366 (2019) 364–369.
doi: 10.1126/science.aay2204
Z. Shen, M.A. Vargas-Rivera, E.L. Rigby, S. Chen, J.A. Ellman, ACS Catal. 12 (2022) 12860–12868.
doi: 10.1021/acscatal.2c03672
Z. Shen, M.M. Walker, S. Chen, et al., J. Am. Chem. Soc., 143 (2021) 126–131.
doi: 10.1021/jacs.0c11911
T. Li, J. Li, H. Huo, Chin. J. Chem. 41 (2023) 544–547.
doi: 10.1002/cjoc.202200560
G. Lei, M. Xu, R. Chang, I. Funes-Ardoiz, J. Ye, J. Am. Chem. Soc. 143 (2021) 11251–11261.
doi: 10.1021/jacs.1c05852
C. Le, Y. Liang, R.W. Evans, X. Li, D.W.C. MacMillan, Nature 547 (2017) 79–83.
doi: 10.1038/nature22813
Z. Gu, L. Zhang, H. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e2022112.
S. Mukherjee, J.W. Yang, S. Hoffmann, B. List, Chem. Rev. 107 (2007) 5471–5569.
doi: 10.1021/cr0684016
C. Zhang, A.Z. Gao, X. Nie, et al., J. Am. Chem. Soc. 143 (2021) 13393–13400.
doi: 10.1021/jacs.1c06637
Q. Chen, Y. Zhu, X. Shi, et al., Chem. Sci. 14 (2023) 1715–1723.
doi: 10.1039/d2sc06340a
K.T. Tarantino, P. Liu, R.R. Knowles, J. Am. Chem. Soc. 135 (2013) 10022–10025.
doi: 10.1021/ja404342j
E.C. Gentry, L.J. Rono, M.E. Hale, R. Matsuura, R.R. Knowles, J. Am. Chem. Soc. 140 (2018) 3394–3402.
doi: 10.1021/jacs.7b13616
L. Wen, J. Ding, L. Duan, et al., Science 382 (2023) 458–464.
doi: 10.1126/science.adj0040
C. Onneken, T. Morack, J. Soika, et al., Nature 621 (2023) 753–759.
doi: 10.1038/s41586-023-06407-8
A. Bauer, F. Westkämper, S. Grimme, T. Bach, Nature 436 (2005) 1139–1140.
doi: 10.1038/nature03955
P. Wessig, Angew. Chem. Int. Ed. 45 (2006) 2168–2171.
doi: 10.1002/anie.200503908
T. Bach, H. Bergmann, K. Harms, Angew. Chem. Int. Ed. 39 (2000) 2302–2304.
doi: 10.1002/1521-3773(20000703)39:13<2302::AID-ANIE2302>3.0.CO;2-6
C. Müller, A. Bauer, T. Bach, Angew. Chem. Int. Ed. 48 (2009) 6640–6642.
doi: 10.1002/anie.200901603
A. Troester, A. Bauer, C. Jandl, T. Bach, Angew. Chem. Int. Ed. 58 (2019) 3538–3541.
doi: 10.1002/anie.201814193
R. Brimioulle, D. Lenhart, M.M. Maturi, T. Bach, Angew. Chem. Int. Ed. 54 (2015) 3872–3890.
doi: 10.1002/anie.201411409
X. Li, R.J. Kutta, C. Jandl, et al., Angew. Chem. Int. Ed. 59 (2020) 21640–21647.
doi: 10.1002/anie.202008384
T. Kratz, P. Steinbach, S. Breitenlechner, et al., J. Am. Chem. Soc. 144 (2022) 10133–10138.
doi: 10.1021/jacs.2c02511
S. Hanessian, D. Delorme, S. Beaudoin, Y. Leblanc, J. Am. Chem. Soc. 106 (1984) 5754–5756.
doi: 10.1021/ja00331a070
S.E. Denmark, C.T. Chen, J. Am. Chem. Soc. 114 (1992) 10674–10676.
doi: 10.1021/ja00052a094
H.J. Gais, G. Schmiedl, R.K.L. Ossenkamp, Liebigs Ann. Recueil (1997) 2419–2431.
doi: 10.1002/jlac.199719971205
S. Crotti, N. Di Iorio, C. Artusi, et al., Org. Lett. 21 (2019) 3013–3017.
doi: 10.1021/acs.orglett.9b00505
M. Mizuno, K. Fujii, K. Tomioka, Angew. Chem. Int. Ed. 37 (1998) 515–517.
doi: 10.1002/(SICI)1521-3773(19980302)37:4<515::AID-ANIE515>3.0.CO;2-Q
H. Arai, A. Wada, J. Photochem. Photobiol. A 388 (2020) 112227.
doi: 10.1016/j.jphotochem.2019.112227
Z. Zhang, X. Hu, Angew. Chem. Int. Ed. 60 (2021) 22833–22838.
doi: 10.1002/anie.202107570
J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 46 (2013) 1900–1909.
doi: 10.1021/ar300227e
J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Chem. Soc. Rev. 43 (2014) 7787–7812.
doi: 10.1039/C3CS60425J
Y. Wang, Y. Ma, X.B. Li, et al., J. Am. Chem. Soc. 142 (2020) 4680–4689.
doi: 10.1021/jacs.9b11768
T. Simon, N. Bouchonville, M.J. Berr, et al., Nature Mater. 13 (2014) 1013–1018.
doi: 10.1038/nmat4049
M. Huang, L. Zhang, T. Pan, S. Luo, Science 375 (2022) 869–874.
doi: 10.1126/science.abl4922
J. Han, V.A. Soloshonok, K.D. Klika, J. Drabowicz, A. Wzorek, Chem. Soc. Rev. 47 (2018) 1307–1350.
doi: 10.1039/c6cs00703a
G.E. O’Mahony, A. Ford, A.R. Maguire, J. Sulfur Chem. 34 (2013) 301–341.
doi: 10.1080/17415993.2012.725247
E. Wojaczynska, J. Wojaczynski, Chem. Rev. 110 (2010) 4303–4356.
doi: 10.1021/cr900147h
J. Legros, J.R. Dehli, C. Bolm, Adv. Synth. Catal. 347 (2005) 19–31.
doi: 10.1002/adsc.200404206
L. Wimberger, T. Kratz, T. Bach, Synth. Stuttg. 51 (2019) 4417–4424.
doi: 10.1055/s-0039-1690034
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Yusong Bi , Rongzhen Zhang , Kaikai Niu , Shengsheng Yu , Hui Liu , Lingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495