Citation: Zhaoyu Jin, Renjun Guan, Xin Li, Dunyi Yuan, Panpan Li. Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes[J]. Chinese Chemical Letters, ;2025, 36(7): 110506. doi: 10.1016/j.cclet.2024.110506 shu

Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes

    * Corresponding author.
    E-mail address: zjin@uestc.edu.cn (Z. Jin),
    panpanli@scu.edu.cn (P. Li).
  • Received Date: 14 May 2024
    Revised Date: 30 July 2024
    Accepted Date: 24 September 2024
    Available Online: 26 September 2024

Figures(10)

  • The management of nitrogenous waste emissions presents significant environmental and health challenges. Efficient and sustainable upcycling strategies are needed to convert waste nitrogen compounds into valuable resources. Electrocatalysis has emerged as a promising solution for waste management, but several challenges remain, including the identification of suitable electrocatalysts and understanding the complex reaction mechanisms. In this review, we focus on the progress in electrocatalytic oxidized nitrogen waste upgrading and utilization, highlighting the application of advanced in situ/operando characterization techniques, including X-ray spectroscopy, scanning electrochemical microscopy and others. These techniques provide valuable insights into the structural and chemical properties of electrocatalysts as well as intermediates during electrochemical reactions, enabling a better understanding of reaction mechanisms and optimization of reaction conditions. The review explores the mechanisms of electrocatalytic upcycling of nitrogenous waste, including nitrate/nitrite reduction, nitric oxide reduction, and carbon dioxide and nitrate co-reduction reactions. Additionally, future research directions and development trends are discussed, offering a relevant guide for the development of sustainable electrocatalytic technologies for waste management and resource recovery.
  • 加载中
    1. [1]

      T.W. Kim, K. Lee, R.G. Najjar, et al., Science 334 (2011) 505–509.  doi: 10.1126/science.1206583

    2. [2]

      C. Yu, X. Huang, H. Chen, et al., Nature 567 (2019) 516–520.  doi: 10.1038/s41586-019-1001-1

    3. [3]

      J.N. Galloway, A.R. Townsend, J.W. Erisman, et al., Science 320 (2008) 889–892.  doi: 10.1126/science.1136674

    4. [4]

      C.V. Preble, R.A. Harley, T.W. Kirchstetter. Environ. Sci. Technol. 53 (2019) 14568–14576.  doi: 10.1021/acs.est.9b04763

    5. [5]

      Z. Hu, J.W. Lee, K. Chandran, et al., Environ. Sci. Technol. 46 (2012) 6470–6480.  doi: 10.1021/es300110x

    6. [6]

      G. Walton. Am. J. Public Health 41 (1951) 986–996.

    7. [7]

      S.S. Mirvish. Nature 315 (1985) 461–462.  doi: 10.1038/315461c0

    8. [8]

      C. Jehanno, J.W. Alty, M. Roosen, et al., Nature 603 (2022) 803–814.  doi: 10.1038/s41586-021-04350-0

    9. [9]

      W. Zheng, L. Zhu, Z. Yan, et al., Environ. Sci. Technol. 55 (2021) 13231–13243.  doi: 10.1021/acs.est.1c02278

    10. [10]

      J. Sun, S. Garg, J. Xie, et al., Environ. Sci. Technol. 56 (2022) 17298–17309.  doi: 10.1021/acs.est.2c06033

    11. [11]

      Y. Xue, Q. Yu, Q. Ma, et al., Environ. Sci. Technol. 56 (2022) 14797–14807.  doi: 10.1021/acs.est.2c04456

    12. [12]

      Z. Chen, H. Yin, C. Wang, et al., Environ. Sci. Technol. 55 (2021) 9285–9292.  doi: 10.1021/acs.est.1c01749

    13. [13]

      K. Zuo, S. Garcia-Segura, G.A. Cerrón-Calle, et al., Nat. Rev. Mater. 8 (2023) 472–490.  doi: 10.1038/s41578-023-00564-y

    14. [14]

      K. Zheng, Y. Wu, Z. Hu, et al., Chem. Soc. Rev. 52 (2023) 8–29.  doi: 10.1039/d2cs00688j

    15. [15]

      H. Xu, Y. Ma, J. Chen, et al., Chem. Soc. Rev. 51 (2022) 2710–2758.  doi: 10.1039/d1cs00857a

    16. [16]

      Y. Guo, J. Bae, Z. Fang, et al., Chem. Rev. 120 (2020) 7642–7707.  doi: 10.1021/acs.chemrev.0c00345

    17. [17]

      P.H. van Langevelde, I. Katsounaros, M.T.M. Koper. Joule 5 (2021) 290–294.

    18. [18]

      R. Li, T. Gao, P. Wang, et al., Appl. Catal. B 331 (2023) 122677.

    19. [19]

      R. Li, T. Gao, W. Qiu, et al., Nano Res. 17 (2023) 2438–2443.  doi: 10.3390/ma16062438

    20. [20]

      T. Gao, L. Qiu, M. Xie, et al., Mater. Horiz. 10 (2023) 4270–4277.  doi: 10.1039/d3mh00882g

    21. [21]

      T. Gao, X. Tang, X. Li, et al., ACS Catal. 13 (2023) 49–59.  doi: 10.1021/acscatal.2c04586

    22. [22]

      Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.

    23. [23]

      Z. Jin, P. Li, Z. Fang, G. Yu. Acc. Chem. Res. 55 (2022) 759–769.  doi: 10.1021/acs.accounts.1c00785

    24. [24]

      P. Wang, Z. Jin, P. Li, G. Yu. Chem Catal. 2 (2022) 1277–1287.

    25. [25]

      Y. Liu, W. Qiu, P. Wang, et al., Appl. Catal. B 340 (2024) 123228.

    26. [26]

      W. Qiu, M. Xie, P. Wang, et al., Small 19 (2023) 2300437.

    27. [27]

      P. Li, Z. Fang, Z. Jin, G. Yu. Chem. Phys. Rev. 2 (2021) 041305.

    28. [28]

      M. Xie, B. Zhang, Z. Jin, et al., ACS Nano 16 (2022) 13715–13727.  doi: 10.1021/acsnano.2c05190

    29. [29]

      Y. Liu, K. Liu, P. Wang, et al., Carb. Neutrality 2 (2023) 14.

    30. [30]

      M. Xie, S. Tang, Z. Li, et al., J. Am. Chem. Soc. 145 (2023) 13957–13967.  doi: 10.1021/jacs.3c03432

    31. [31]

      Y. Yang, Y. Xiong, R. Zeng, et al., ACS Catal. 11 (2021) 1136–1178.  doi: 10.1021/acscatal.0c04789

    32. [32]

      J. Li, J. Gong. Energy Environ. Sci. 13 (2020) 3748–3779.  doi: 10.1039/d0ee01706j

    33. [33]

      X. Zhang, E.A. Davidson, D.L. Mauzerall, et al., Nature 528 (2015) 51–59.  doi: 10.1038/nature15743

    34. [34]

      L.F. Greenlee. Nat. Energy 5 (2020) 557–558.  doi: 10.1038/s41560-020-0670-1

    35. [35]

      B.T. Nolan, K.J. Hitt. Environ. Sci. Technol. 40 (2006) 7834–7840.  doi: 10.1021/es060911u

    36. [36]

      S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff. Appl. Catal. B 236 (2018) 546–568.

    37. [37]

      V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper. Chem. Rev. 109 (2009) 2209–2244.  doi: 10.1021/cr8003696

    38. [38]

      H. Wang, J. Huang, J. Cai, et al., Small Methods 7 (2023) 2300169.

    39. [39]

      J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) eaar6611.

    40. [40]

      J. Long, S. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 9711–9718.  doi: 10.1002/anie.202002337

    41. [41]

      L. Ouyang, J. Liang, Y. Luo, et al., Chin. J. Catal. 50 (2023) 6–44.

    42. [42]

      Y. Zang, Q. Wu, S. Wang, et al., J. Phys. Chem. Lett. 13 (2022) 527–535.  doi: 10.1021/acs.jpclett.1c03938

    43. [43]

      Z. Tao, C.L. Rooney, Y. Liang, H. Wang. J. Am. Chem. Soc. 143 (2021) 19630–19642.  doi: 10.1021/jacs.1c10714

    44. [44]

      M. Shibata, K. Yoshida, N. Furuya. J. Electroanal. Chem. 387 (1995) 143–145.

    45. [45]

      M. Shibata, K. Yoshida, N. Furuya. J. Electroanal. Chem. 442 (1998) 67–72.

    46. [46]

      M. Shibata, K. Yoshida, N. Furuya. J. Electrochem. Soc. 145 (1998) 595.  doi: 10.1149/1.1838309

    47. [47]

      N. Meng, Y. Huang, Y. Liu, et al., Cell Rep. Phys. Sci. 2 (2021) 100378.

    48. [48]

      C. Lv, L. Zhong, H. Liu, et al., Nat. Sustain. 4 (2021) 868–876.  doi: 10.1038/s41893-021-00741-3

    49. [49]

      Y. Zhu, J. Wang, H. Chu, et al., ACS Energy Lett. 5 (2020) 1281–1291.  doi: 10.1021/acsenergylett.0c00305

    50. [50]

      J. Timoshenko, B. Roldan Cuenya. Chem. Rev. 121 (2021) 882–961.  doi: 10.1021/acs.chemrev.0c00396

    51. [51]

      Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732–745.  doi: 10.1038/s41560-019-0450-y

    52. [52]

      X. Li, S. Wang, L. Li, et al., J. Am. Chem. Soc. 142 (2020) 9567–9581.

    53. [53]

      Y. Wang, A. Xu, Z. Wang, et al., J. Am. Chem. Soc. 142 (2020) 5702–5708.  doi: 10.1021/jacs.9b13347

    54. [54]

      J. Li, G. Zhan, J. Yang, et al., J. Am. Chem. Soc. 142 (2020) 7036–7046.  doi: 10.1021/jacs.0c00418

    55. [55]

      P. Li, Z. Jin, Z. Fang, G. Yu. Energy Environ. Sci. 14 (2021) 3522–3531.  doi: 10.1039/d1ee00545f

    56. [56]

      W. He, J. Zhang, S. Dieckhöfer, et al., Nat. Commun. 13 (2022) 1129.

    57. [57]

      K. Fan, W. Xie, J. Li, et al., Nat. Commun. 13 (2022) 7958.

    58. [58]

      Y. Wang, W. Zhou, R. Jia, et al., Angew. Chem. Int. Ed. 59 (2020) 5350–5354.  doi: 10.1002/anie.201915992

    59. [59]

      H.D. Abruna. Electrochemical Interfaces: Modern Techniques For In-Situ Interface Characterization, VCH, New York, 1991.

    60. [60]

      J. Yano, V.K. Yachandra. Photosynth. Res. 102 (2009) 241–254.  doi: 10.1007/s11120-009-9473-8

    61. [61]

      J. Timoshenko, H.S. Jeon, I. Sinev, et al., Chem. Sci. 11 (2020) 3727–3736.  doi: 10.1039/d0sc00382d

    62. [62]

      F.Y. Chen, Z.Y. Wu, S. Gupta, et al., Nat. Nanotechnol. 17 (2022) 759–767.  doi: 10.1038/s41565-022-01121-4

    63. [63]

      J. Yang, H. Qi, A. Li, et al., J. Am. Chem. Soc. 144 (2022) 12062–12071.  doi: 10.1021/jacs.2c02262

    64. [64]

      X. Li, P. Shen, Y. Luo, et al., Angew. Chem. Int. Ed. 61 (2022) e202205923.

    65. [65]

      X. Chen, S. Lv, J. Kang, et al., Proc. Nat. Acad. Sci. 120 (2023) e2306841120.

    66. [66]

      W. Zheng. Chem. Methods 3 (2023) e202200042.

    67. [67]

      R. Daiyan, T. Tran-Phu, P. Kumar, et al., Energy Environ. Sci. 14 (2021) 3588–3598.  doi: 10.1039/d1ee00594d

    68. [68]

      L. Bian, Z. -Y. Zhang, H. Tian, et al., Chin. J. Catal. 54 (2023) 199–211.

    69. [69]

      Y. Wang, C. Wang, M. Li, et al., Chem. Soc. Rev. 50 (2021) 6720–6733.  doi: 10.1039/d1cs00116g

    70. [70]

      W. Gao, K. Xie, J. Xie, et al., Adv. Mater. 35 (2023) 2202952.

    71. [71]

      Y. Huang, C. He, C. Cheng, et al., Nat. Commun. 14 (2023) 7368.

    72. [72]

      Y. Wang, Y. Xu, C. Cheng, et al., Angew. Chem. Int. Ed. 63 (2024) e202315109.

    73. [73]

      S. Han, H. Li, T. Li, et al., Nat. Catal. 6 (2023) 402–414.  doi: 10.1038/s41929-023-00951-2

    74. [74]

      Z. Chang, G. Meng, Y. Chen, et al., Adv. Mater. 35 (2023) 2304508.

    75. [75]

      J. Zhao, Y. Yuan, F. Zhao, et al., Appl. Catal. B 340 (2024) 123265.

    76. [76]

      T. Matsui, S. Suzuki, Y. Katayama, et al., Langmuir 31 (2015) 11717–11723.  doi: 10.1021/acs.langmuir.5b02330

    77. [77]

      H. Tian, Z. -Y. Zhang, H. Fang, et al., Appl. Catal. B 351 (2024) 124001.

    78. [78]

      J. Zhang, J. -J. Dai, D. -Q. Cao, et al., J. Energy Chem. 83 (2023) 313–323.  doi: 10.3390/agronomy13020313

    79. [79]

      J. -T. Li, Z. -Y. Zhou, I. Broadwell, S. -G. Sun. Acc. Chem. Res. 45 (2012) 485–494.  doi: 10.1021/ar200215t

    80. [80]

      J. -Y. Fang, Q. -Z. Zheng, Y. -Y. Lou, et al., Nat. Commun. 13 (2022) 7899.

    81. [81]

      X. Zhang, X. Zhu, S. Bo, et al., Nat. Commun. 13 (2022) 5337.

    82. [82]

      H. Li, Y. Guo, Z. Jin. Carb. Neutrality 2 (2023) 22.

    83. [83]

      A.J. Bard, F.R.F. Fan, J. Kwak, O. Lev. Anal. Chem. 61 (1989) 132–138.  doi: 10.1021/ac00177a011

    84. [84]

      J. Kim, J.E. Dick, A.J. Bard. Acc. Chem. Res. 49 (2016) 2587–2595.  doi: 10.1021/acs.accounts.6b00340

    85. [85]

      Z. Jin. Anal. Chem. 95 (2023) 6477–6489.  doi: 10.1021/acs.analchem.2c05755

    86. [86]

      J. Xu, H. Gao, F. Wang, M. Zhou. Curr. Opin. Electrochem. 39 (2023) 101299.

    87. [87]

      Z. Jin, A.J. Bard. Angew. Chem. Int. Ed. 60 (2021) 794–799.  doi: 10.1002/anie.202008052

    88. [88]

      P. Li, Z. Jin, Y. Qian, et al., Mater. Today 35 (2020) 78–86.

    89. [89]

      P. Li, Z. Jin, Y. Qian, et al., ACS Energy Lett. 4 (2019) 1793–1802.  doi: 10.1021/acsenergylett.9b00893

    90. [90]

      K. Liu, H. Li, M. Xie, et al., J. Am. Chem. Soc. 146 (2024) 7779–7790.  doi: 10.1021/jacs.4c00429

    91. [91]

      J. Kim, C. Renault, N. Nioradze, et al., Anal. Chem. 88 (2016) 10284–10289.  doi: 10.1021/acs.analchem.6b03024

    92. [92]

      Y.L. Liu, Y.X. Zhao, Y.B. Li, et al., J. Anal. Test. 6 (2022) 178–192.

    93. [93]

      H. Gao, J. Xu, X. Zhang, M. Zhou. Angew. Chem. Int. Ed. 63 (2024) e202404663.

    94. [94]

      H. Gao, J. Xu, C. Liu, et al., Anal. Chem. 94 (2022) 14092–14098.  doi: 10.1021/acs.analchem.2c02296

    95. [95]

      H.S. Ahn, A.J. Bard. J. Am. Chem. Soc. 138 (2016) 313–318.  doi: 10.1021/jacs.5b10977

    96. [96]

      H.S. Ahn, A.J. Bard. J. Am. Chem. Soc. 137 (2015) 612–615.  doi: 10.1021/ja511740h

    97. [97]

      Z. Liang, H.S. Ahn, A.J. Bard. J. Am. Chem. Soc. 139 (2017) 4854–4858.  doi: 10.1021/jacs.7b00279

    98. [98]

      H.S. Ahn, A.J. Bard. Anal. Chem. 87 (2015) 12276–12280.  doi: 10.1021/acs.analchem.5b03542

    99. [99]

      Y. Pan, X. Shan, F. Cai et al., , Angew. Chem. Int. Ed. 63 (2024) e202407116.

    100. [100]

      H. Li, P. Li, Y. Guo, Z. Jin. Anal. Chem. 96 (2024) 997–1002.

    101. [101]

      P. Li, L. Liao, Z. Fang, et al., Proc. Natl. Acad. Sci. 120 (2023) e2305489120.

    102. [102]

      P. Li, R. Li, Y. Liu, et al., J. Am. Chem. Soc. 145 (2023) 6471–6479.  doi: 10.1021/jacs.3c00334

    103. [103]

      A.A. Abd-El-Latif, C.J. Bondue, S. Ernst, et al., Trac-Trend. Anal. Chem. 70 (2015) 4–13.

    104. [104]

      W. Chen, F. He, Y. -X. Chen. Curr. Opin. Electrochem. 42 (2023) 101393.

    105. [105]

      E.L. Clark, A.T. Bell. J. Am. Chem. Soc. 140 (2018) 7012–7020.  doi: 10.1021/jacs.8b04058

    106. [106]

      M. Duca, M.O. Cucarella, P. Rodriguez, M.T.M. Koper. J. Am. Chem. Soc. 132 (2010) 18042–18044.  doi: 10.1021/ja1092503

    107. [107]

      Y. Zhao, Y. Ding, W. Li, et al., Nat. Commun. 14 (2023) 4491.

    108. [108]

      N. Shpigel, M.D. Levi, S. Sigalov, et al., Acc. Chem. Res. 51 (2018) 69–79.  doi: 10.1021/acs.accounts.7b00477

    109. [109]

      M. Yao, P. Wu, S. Cheng, et al., Phys. Chem. Chem. Phys. 19 (2017) 24689–24695.

    110. [110]

      D. Reyter, D. Bélanger, L. Roué. Electrochim. Acta 53 (2008) 5977–5984.

    111. [111]

      N.G. Rey, D.D. Dlott. J. Electroanal. Chem. 800 (2017) 114–125.

    112. [112]

      X. Wei, X. Wen, Y. Liu, et al., J. Am. Chem. Soc. 144 (2022) 11530–11535.  doi: 10.1021/jacs.2c03452

    113. [113]

      S. Neukermans, M. Samanipour, H.Y. Vincent Ching, et al., ChemElectroChem 7 (2020) 4578–4586.  doi: 10.1002/celc.202001193

    114. [114]

      X. Wang, X. Wu, W. Ma, et al., Proc. Nat. Acad. Sci. 120 (2023) e2217703120.

    115. [115]

      B. Jiang, J. Zhu, Z. Xia, et al., Adv. Mater. 36 (2024) 2310699.

    116. [116]

      L. Zhang, J. Zhu, X. Li, et al., Interdiscip. Mater. 1 (2022) 51–87.  doi: 10.1002/idm2.12011

    117. [117]

      H. Li, X. Zhang, Z. Sun, W. Ma. J. Am. Chem. Soc. 144 (2022) 16480–16489.  doi: 10.1021/jacs.2c05299

    118. [118]

      Z. Gu, J. Le, H. Wei, et al., Chin. Chem. Lett. 35 (2023) 108849.

    119. [119]

      M. Kang, C.L. Bentley, J.T. Mefford, et al., ACS Nano 17 (2023) 21493–21505.  doi: 10.1021/acsnano.3c06335

    120. [120]

      O.J. Wahab, E. Daviddi, B. Xin, et al., Nature 620 (2023) 782–786.  doi: 10.1038/s41586-023-06247-6

    121. [121]

      J.T. Mefford, A.R. Akbashev, M. Kang, et al., Nature 593 (2021) 67–73.  doi: 10.1038/s41586-021-03454-x

    122. [122]

      D. Martín-Yerga, P.R. Unwin, D. Valavanis, X. Xu. Curr. Opin. Electrochem. 42 (2023) 101405.

    123. [123]

      N.B. Schorr, Z.T. Gossage, J. Rodríguez-López. Curr. Opin. Electrochem. 8 (2018) 89–95.

    124. [124]

      H.M. Li, S.P. Li, R.J. Guan, et al., ACS Catal. 14 (2024) 12042–12050.  doi: 10.1021/acscatal.4c03245

    125. [125]

      N. Singh, B.R. Goldsmith. ACS Catal. 10 (2020) 3365–3371.  doi: 10.1021/acscatal.9b04167

    126. [126]

      J.F. Tan, A. Anastasi, S. Chandra. Curr. Opin. Electrochem. 32 (2022) 100926.

    127. [127]

      X. Chen, H. Pu, Z. Fu, et al., Environ. Sci. Nano 5 (2018) 1990–1999.  doi: 10.1039/c8en00588e

  • 加载中
    1. [1]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    6. [6]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    7. [7]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    8. [8]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    9. [9]

      Xuyun LuYanan ChangShasha WangXiaoxuan LiJianchun BaoYing Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277

    10. [10]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    11. [11]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    12. [12]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    13. [13]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    14. [14]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    15. [15]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    16. [16]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    17. [17]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    18. [18]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    19. [19]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    20. [20]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return