-
[1]
T.W. Kim, K. Lee, R.G. Najjar, et al., Science 334 (2011) 505–509.
doi: 10.1126/science.1206583
-
[2]
C. Yu, X. Huang, H. Chen, et al., Nature 567 (2019) 516–520.
doi: 10.1038/s41586-019-1001-1
-
[3]
J.N. Galloway, A.R. Townsend, J.W. Erisman, et al., Science 320 (2008) 889–892.
doi: 10.1126/science.1136674
-
[4]
C.V. Preble, R.A. Harley, T.W. Kirchstetter. Environ. Sci. Technol. 53 (2019) 14568–14576.
doi: 10.1021/acs.est.9b04763
-
[5]
Z. Hu, J.W. Lee, K. Chandran, et al., Environ. Sci. Technol. 46 (2012) 6470–6480.
doi: 10.1021/es300110x
-
[6]
G. Walton. Am. J. Public Health 41 (1951) 986–996.
-
[7]
S.S. Mirvish. Nature 315 (1985) 461–462.
doi: 10.1038/315461c0
-
[8]
C. Jehanno, J.W. Alty, M. Roosen, et al., Nature 603 (2022) 803–814.
doi: 10.1038/s41586-021-04350-0
-
[9]
W. Zheng, L. Zhu, Z. Yan, et al., Environ. Sci. Technol. 55 (2021) 13231–13243.
doi: 10.1021/acs.est.1c02278
-
[10]
J. Sun, S. Garg, J. Xie, et al., Environ. Sci. Technol. 56 (2022) 17298–17309.
doi: 10.1021/acs.est.2c06033
-
[11]
Y. Xue, Q. Yu, Q. Ma, et al., Environ. Sci. Technol. 56 (2022) 14797–14807.
doi: 10.1021/acs.est.2c04456
-
[12]
Z. Chen, H. Yin, C. Wang, et al., Environ. Sci. Technol. 55 (2021) 9285–9292.
doi: 10.1021/acs.est.1c01749
-
[13]
K. Zuo, S. Garcia-Segura, G.A. Cerrón-Calle, et al., Nat. Rev. Mater. 8 (2023) 472–490.
doi: 10.1038/s41578-023-00564-y
-
[14]
K. Zheng, Y. Wu, Z. Hu, et al., Chem. Soc. Rev. 52 (2023) 8–29.
doi: 10.1039/d2cs00688j
-
[15]
H. Xu, Y. Ma, J. Chen, et al., Chem. Soc. Rev. 51 (2022) 2710–2758.
doi: 10.1039/d1cs00857a
-
[16]
Y. Guo, J. Bae, Z. Fang, et al., Chem. Rev. 120 (2020) 7642–7707.
doi: 10.1021/acs.chemrev.0c00345
-
[17]
P.H. van Langevelde, I. Katsounaros, M.T.M. Koper. Joule 5 (2021) 290–294.
-
[18]
R. Li, T. Gao, P. Wang, et al., Appl. Catal. B 331 (2023) 122677.
-
[19]
R. Li, T. Gao, W. Qiu, et al., Nano Res. 17 (2023) 2438–2443.
doi: 10.3390/ma16062438
-
[20]
T. Gao, L. Qiu, M. Xie, et al., Mater. Horiz. 10 (2023) 4270–4277.
doi: 10.1039/d3mh00882g
-
[21]
T. Gao, X. Tang, X. Li, et al., ACS Catal. 13 (2023) 49–59.
doi: 10.1021/acscatal.2c04586
-
[22]
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.
-
[23]
Z. Jin, P. Li, Z. Fang, G. Yu. Acc. Chem. Res. 55 (2022) 759–769.
doi: 10.1021/acs.accounts.1c00785
-
[24]
P. Wang, Z. Jin, P. Li, G. Yu. Chem Catal. 2 (2022) 1277–1287.
-
[25]
Y. Liu, W. Qiu, P. Wang, et al., Appl. Catal. B 340 (2024) 123228.
-
[26]
W. Qiu, M. Xie, P. Wang, et al., Small 19 (2023) 2300437.
-
[27]
P. Li, Z. Fang, Z. Jin, G. Yu. Chem. Phys. Rev. 2 (2021) 041305.
-
[28]
M. Xie, B. Zhang, Z. Jin, et al., ACS Nano 16 (2022) 13715–13727.
doi: 10.1021/acsnano.2c05190
-
[29]
Y. Liu, K. Liu, P. Wang, et al., Carb. Neutrality 2 (2023) 14.
-
[30]
M. Xie, S. Tang, Z. Li, et al., J. Am. Chem. Soc. 145 (2023) 13957–13967.
doi: 10.1021/jacs.3c03432
-
[31]
Y. Yang, Y. Xiong, R. Zeng, et al., ACS Catal. 11 (2021) 1136–1178.
doi: 10.1021/acscatal.0c04789
-
[32]
J. Li, J. Gong. Energy Environ. Sci. 13 (2020) 3748–3779.
doi: 10.1039/d0ee01706j
-
[33]
X. Zhang, E.A. Davidson, D.L. Mauzerall, et al., Nature 528 (2015) 51–59.
doi: 10.1038/nature15743
-
[34]
L.F. Greenlee. Nat. Energy 5 (2020) 557–558.
doi: 10.1038/s41560-020-0670-1
-
[35]
B.T. Nolan, K.J. Hitt. Environ. Sci. Technol. 40 (2006) 7834–7840.
doi: 10.1021/es060911u
-
[36]
S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff. Appl. Catal. B 236 (2018) 546–568.
-
[37]
V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper. Chem. Rev. 109 (2009) 2209–2244.
doi: 10.1021/cr8003696
-
[38]
H. Wang, J. Huang, J. Cai, et al., Small Methods 7 (2023) 2300169.
-
[39]
J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) eaar6611.
-
[40]
J. Long, S. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 9711–9718.
doi: 10.1002/anie.202002337
-
[41]
L. Ouyang, J. Liang, Y. Luo, et al., Chin. J. Catal. 50 (2023) 6–44.
-
[42]
Y. Zang, Q. Wu, S. Wang, et al., J. Phys. Chem. Lett. 13 (2022) 527–535.
doi: 10.1021/acs.jpclett.1c03938
-
[43]
Z. Tao, C.L. Rooney, Y. Liang, H. Wang. J. Am. Chem. Soc. 143 (2021) 19630–19642.
doi: 10.1021/jacs.1c10714
-
[44]
M. Shibata, K. Yoshida, N. Furuya. J. Electroanal. Chem. 387 (1995) 143–145.
-
[45]
M. Shibata, K. Yoshida, N. Furuya. J. Electroanal. Chem. 442 (1998) 67–72.
-
[46]
M. Shibata, K. Yoshida, N. Furuya. J. Electrochem. Soc. 145 (1998) 595.
doi: 10.1149/1.1838309
-
[47]
N. Meng, Y. Huang, Y. Liu, et al., Cell Rep. Phys. Sci. 2 (2021) 100378.
-
[48]
C. Lv, L. Zhong, H. Liu, et al., Nat. Sustain. 4 (2021) 868–876.
doi: 10.1038/s41893-021-00741-3
-
[49]
Y. Zhu, J. Wang, H. Chu, et al., ACS Energy Lett. 5 (2020) 1281–1291.
doi: 10.1021/acsenergylett.0c00305
-
[50]
J. Timoshenko, B. Roldan Cuenya. Chem. Rev. 121 (2021) 882–961.
doi: 10.1021/acs.chemrev.0c00396
-
[51]
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732–745.
doi: 10.1038/s41560-019-0450-y
-
[52]
X. Li, S. Wang, L. Li, et al., J. Am. Chem. Soc. 142 (2020) 9567–9581.
-
[53]
Y. Wang, A. Xu, Z. Wang, et al., J. Am. Chem. Soc. 142 (2020) 5702–5708.
doi: 10.1021/jacs.9b13347
-
[54]
J. Li, G. Zhan, J. Yang, et al., J. Am. Chem. Soc. 142 (2020) 7036–7046.
doi: 10.1021/jacs.0c00418
-
[55]
P. Li, Z. Jin, Z. Fang, G. Yu. Energy Environ. Sci. 14 (2021) 3522–3531.
doi: 10.1039/d1ee00545f
-
[56]
W. He, J. Zhang, S. Dieckhöfer, et al., Nat. Commun. 13 (2022) 1129.
-
[57]
K. Fan, W. Xie, J. Li, et al., Nat. Commun. 13 (2022) 7958.
-
[58]
Y. Wang, W. Zhou, R. Jia, et al., Angew. Chem. Int. Ed. 59 (2020) 5350–5354.
doi: 10.1002/anie.201915992
-
[59]
H.D. Abruna. Electrochemical Interfaces: Modern Techniques For In-Situ Interface Characterization, VCH, New York, 1991.
-
[60]
J. Yano, V.K. Yachandra. Photosynth. Res. 102 (2009) 241–254.
doi: 10.1007/s11120-009-9473-8
-
[61]
J. Timoshenko, H.S. Jeon, I. Sinev, et al., Chem. Sci. 11 (2020) 3727–3736.
doi: 10.1039/d0sc00382d
-
[62]
F.Y. Chen, Z.Y. Wu, S. Gupta, et al., Nat. Nanotechnol. 17 (2022) 759–767.
doi: 10.1038/s41565-022-01121-4
-
[63]
J. Yang, H. Qi, A. Li, et al., J. Am. Chem. Soc. 144 (2022) 12062–12071.
doi: 10.1021/jacs.2c02262
-
[64]
X. Li, P. Shen, Y. Luo, et al., Angew. Chem. Int. Ed. 61 (2022) e202205923.
-
[65]
X. Chen, S. Lv, J. Kang, et al., Proc. Nat. Acad. Sci. 120 (2023) e2306841120.
-
[66]
W. Zheng. Chem. Methods 3 (2023) e202200042.
-
[67]
R. Daiyan, T. Tran-Phu, P. Kumar, et al., Energy Environ. Sci. 14 (2021) 3588–3598.
doi: 10.1039/d1ee00594d
-
[68]
L. Bian, Z. -Y. Zhang, H. Tian, et al., Chin. J. Catal. 54 (2023) 199–211.
-
[69]
Y. Wang, C. Wang, M. Li, et al., Chem. Soc. Rev. 50 (2021) 6720–6733.
doi: 10.1039/d1cs00116g
-
[70]
W. Gao, K. Xie, J. Xie, et al., Adv. Mater. 35 (2023) 2202952.
-
[71]
Y. Huang, C. He, C. Cheng, et al., Nat. Commun. 14 (2023) 7368.
-
[72]
Y. Wang, Y. Xu, C. Cheng, et al., Angew. Chem. Int. Ed. 63 (2024) e202315109.
-
[73]
S. Han, H. Li, T. Li, et al., Nat. Catal. 6 (2023) 402–414.
doi: 10.1038/s41929-023-00951-2
-
[74]
Z. Chang, G. Meng, Y. Chen, et al., Adv. Mater. 35 (2023) 2304508.
-
[75]
J. Zhao, Y. Yuan, F. Zhao, et al., Appl. Catal. B 340 (2024) 123265.
-
[76]
T. Matsui, S. Suzuki, Y. Katayama, et al., Langmuir 31 (2015) 11717–11723.
doi: 10.1021/acs.langmuir.5b02330
-
[77]
H. Tian, Z. -Y. Zhang, H. Fang, et al., Appl. Catal. B 351 (2024) 124001.
-
[78]
J. Zhang, J. -J. Dai, D. -Q. Cao, et al., J. Energy Chem. 83 (2023) 313–323.
doi: 10.3390/agronomy13020313
-
[79]
J. -T. Li, Z. -Y. Zhou, I. Broadwell, S. -G. Sun. Acc. Chem. Res. 45 (2012) 485–494.
doi: 10.1021/ar200215t
-
[80]
J. -Y. Fang, Q. -Z. Zheng, Y. -Y. Lou, et al., Nat. Commun. 13 (2022) 7899.
-
[81]
X. Zhang, X. Zhu, S. Bo, et al., Nat. Commun. 13 (2022) 5337.
-
[82]
H. Li, Y. Guo, Z. Jin. Carb. Neutrality 2 (2023) 22.
-
[83]
A.J. Bard, F.R.F. Fan, J. Kwak, O. Lev. Anal. Chem. 61 (1989) 132–138.
doi: 10.1021/ac00177a011
-
[84]
J. Kim, J.E. Dick, A.J. Bard. Acc. Chem. Res. 49 (2016) 2587–2595.
doi: 10.1021/acs.accounts.6b00340
-
[85]
Z. Jin. Anal. Chem. 95 (2023) 6477–6489.
doi: 10.1021/acs.analchem.2c05755
-
[86]
J. Xu, H. Gao, F. Wang, M. Zhou. Curr. Opin. Electrochem. 39 (2023) 101299.
-
[87]
Z. Jin, A.J. Bard. Angew. Chem. Int. Ed. 60 (2021) 794–799.
doi: 10.1002/anie.202008052
-
[88]
P. Li, Z. Jin, Y. Qian, et al., Mater. Today 35 (2020) 78–86.
-
[89]
P. Li, Z. Jin, Y. Qian, et al., ACS Energy Lett. 4 (2019) 1793–1802.
doi: 10.1021/acsenergylett.9b00893
-
[90]
K. Liu, H. Li, M. Xie, et al., J. Am. Chem. Soc. 146 (2024) 7779–7790.
doi: 10.1021/jacs.4c00429
-
[91]
J. Kim, C. Renault, N. Nioradze, et al., Anal. Chem. 88 (2016) 10284–10289.
doi: 10.1021/acs.analchem.6b03024
-
[92]
Y.L. Liu, Y.X. Zhao, Y.B. Li, et al., J. Anal. Test. 6 (2022) 178–192.
-
[93]
H. Gao, J. Xu, X. Zhang, M. Zhou. Angew. Chem. Int. Ed. 63 (2024) e202404663.
-
[94]
H. Gao, J. Xu, C. Liu, et al., Anal. Chem. 94 (2022) 14092–14098.
doi: 10.1021/acs.analchem.2c02296
-
[95]
H.S. Ahn, A.J. Bard. J. Am. Chem. Soc. 138 (2016) 313–318.
doi: 10.1021/jacs.5b10977
-
[96]
H.S. Ahn, A.J. Bard. J. Am. Chem. Soc. 137 (2015) 612–615.
doi: 10.1021/ja511740h
-
[97]
Z. Liang, H.S. Ahn, A.J. Bard. J. Am. Chem. Soc. 139 (2017) 4854–4858.
doi: 10.1021/jacs.7b00279
-
[98]
H.S. Ahn, A.J. Bard. Anal. Chem. 87 (2015) 12276–12280.
doi: 10.1021/acs.analchem.5b03542
-
[99]
Y. Pan, X. Shan, F. Cai et al., , Angew. Chem. Int. Ed. 63 (2024) e202407116.
-
[100]
H. Li, P. Li, Y. Guo, Z. Jin. Anal. Chem. 96 (2024) 997–1002.
-
[101]
P. Li, L. Liao, Z. Fang, et al., Proc. Natl. Acad. Sci. 120 (2023) e2305489120.
-
[102]
P. Li, R. Li, Y. Liu, et al., J. Am. Chem. Soc. 145 (2023) 6471–6479.
doi: 10.1021/jacs.3c00334
-
[103]
A.A. Abd-El-Latif, C.J. Bondue, S. Ernst, et al., Trac-Trend. Anal. Chem. 70 (2015) 4–13.
-
[104]
W. Chen, F. He, Y. -X. Chen. Curr. Opin. Electrochem. 42 (2023) 101393.
-
[105]
E.L. Clark, A.T. Bell. J. Am. Chem. Soc. 140 (2018) 7012–7020.
doi: 10.1021/jacs.8b04058
-
[106]
M. Duca, M.O. Cucarella, P. Rodriguez, M.T.M. Koper. J. Am. Chem. Soc. 132 (2010) 18042–18044.
doi: 10.1021/ja1092503
-
[107]
Y. Zhao, Y. Ding, W. Li, et al., Nat. Commun. 14 (2023) 4491.
-
[108]
N. Shpigel, M.D. Levi, S. Sigalov, et al., Acc. Chem. Res. 51 (2018) 69–79.
doi: 10.1021/acs.accounts.7b00477
-
[109]
M. Yao, P. Wu, S. Cheng, et al., Phys. Chem. Chem. Phys. 19 (2017) 24689–24695.
-
[110]
D. Reyter, D. Bélanger, L. Roué. Electrochim. Acta 53 (2008) 5977–5984.
-
[111]
N.G. Rey, D.D. Dlott. J. Electroanal. Chem. 800 (2017) 114–125.
-
[112]
X. Wei, X. Wen, Y. Liu, et al., J. Am. Chem. Soc. 144 (2022) 11530–11535.
doi: 10.1021/jacs.2c03452
-
[113]
S. Neukermans, M. Samanipour, H.Y. Vincent Ching, et al., ChemElectroChem 7 (2020) 4578–4586.
doi: 10.1002/celc.202001193
-
[114]
X. Wang, X. Wu, W. Ma, et al., Proc. Nat. Acad. Sci. 120 (2023) e2217703120.
-
[115]
B. Jiang, J. Zhu, Z. Xia, et al., Adv. Mater. 36 (2024) 2310699.
-
[116]
L. Zhang, J. Zhu, X. Li, et al., Interdiscip. Mater. 1 (2022) 51–87.
doi: 10.1002/idm2.12011
-
[117]
H. Li, X. Zhang, Z. Sun, W. Ma. J. Am. Chem. Soc. 144 (2022) 16480–16489.
doi: 10.1021/jacs.2c05299
-
[118]
Z. Gu, J. Le, H. Wei, et al., Chin. Chem. Lett. 35 (2023) 108849.
-
[119]
M. Kang, C.L. Bentley, J.T. Mefford, et al., ACS Nano 17 (2023) 21493–21505.
doi: 10.1021/acsnano.3c06335
-
[120]
O.J. Wahab, E. Daviddi, B. Xin, et al., Nature 620 (2023) 782–786.
doi: 10.1038/s41586-023-06247-6
-
[121]
J.T. Mefford, A.R. Akbashev, M. Kang, et al., Nature 593 (2021) 67–73.
doi: 10.1038/s41586-021-03454-x
-
[122]
D. Martín-Yerga, P.R. Unwin, D. Valavanis, X. Xu. Curr. Opin. Electrochem. 42 (2023) 101405.
-
[123]
N.B. Schorr, Z.T. Gossage, J. Rodríguez-López. Curr. Opin. Electrochem. 8 (2018) 89–95.
-
[124]
H.M. Li, S.P. Li, R.J. Guan, et al., ACS Catal. 14 (2024) 12042–12050.
doi: 10.1021/acscatal.4c03245
-
[125]
N. Singh, B.R. Goldsmith. ACS Catal. 10 (2020) 3365–3371.
doi: 10.1021/acscatal.9b04167
-
[126]
J.F. Tan, A. Anastasi, S. Chandra. Curr. Opin. Electrochem. 32 (2022) 100926.
-
[127]
X. Chen, H. Pu, Z. Fu, et al., Environ. Sci. Nano 5 (2018) 1990–1999.
doi: 10.1039/c8en00588e