Citation: Jiuhong Li, Xulin Hu, Yuanmeng Chen, Diyi Fan, Chao Tan, Shuhao Yang, Haoming Wu, Yao Wang, Qi An, Zhenghua Xiao, Jia Hu, Jian He, Yongjun Qian, Zhiyong Qian. Review of recent progress in vascular stents: From conventional to functional vascular stents[J]. Chinese Chemical Letters, ;2025, 36(7): 110492. doi: 10.1016/j.cclet.2024.110492 shu

Review of recent progress in vascular stents: From conventional to functional vascular stents

    * Corresponding authors.
    E-mail addresses: yongjunqian@sina.com (Y. Qian), anderson-qian@163.com (Z. Qian).
    1 These authors contributed equally to this work.
  • Received Date: 5 February 2024
    Revised Date: 19 September 2024
    Accepted Date: 23 September 2024
    Available Online: 27 September 2024

Figures(1)

  • Vascular stents play an important role in the minimally invasive treatment of vascular diseases, such as vascular stenosis, vascular aneurysm, vascular dissection and vascular atherosclerotic plaque disease. Bare metal stents were initially fabricated; however, the incidence of complications such as thrombosis, inflammation, restenosis, vascular injury, displacement and endoleakage is still high after implantation. To overcome these complications, several strategies for designing functional vascular stents have been carried out. Drug-eluting stents, biodegradable stents and bionic stents were manufactured and investigated. This review aims to comprehensively analyze the vascular diseases suitable for stent implantation treatment, tissue reactions after implantation, the materials and manufacturing techniques used to fabricate vascular stents, the various application scenarios in which they could be used to treat vascular lesions and the development process of vascular stents. Future development trends of vascular stents are expected to prioritize their performance, biocompatibility, and clinical accessibility. The design of vascular stents may be transformed or improved to better fulfill the rehabilitation requirements of vascular disease patients. Finally, various application scenarios may be used to treat vascular or even nonvascular diseases via endovascular access.
  • 加载中
    1. [1]

      G.A. Roth, G.A. Mensah, C.O. Johnson, et al., J. Am. Coll. Cardiol. 76 (2020) 2982–3021.

    2. [2]

      H. Thomas, J. Diamond, A. Vieco, et al., Glob. Heart. 13 (2018) 143–163.  doi: 10.1016/j.gheart.2018.09.511

    3. [3]

      C. Pan, Y. Han, J. Lu, Micromachines 12 (2021) 770.  doi: 10.3390/mi12070770

    4. [4]

      A. Scafa Udriste, A.G. Niculescu, A.M. Grumezescu, E. Bădilă, Materials 14 (2021) 2498.  doi: 10.3390/ma14102498

    5. [5]

      A.P. Miller, C.M. Huff, G.S. Roubin, J. Cardiol. 13 (2016) 727–732.

    6. [6]

      J. Al Suwaidi, P.B. Berger, D.R. Holmes, Jr., JAMA. 284 (2000) 1828–1836.

    7. [7]

      L. Wang, L. Jiao, S. Pang, et al., Micromachines 12 (2021) 990.

    8. [8]

      M.D. Dake, Eur. J. Radiol. 39 (2001) 42–49.

    9. [9]

      J.A. Beckman, P.A. Schneider, M.S. Conte, Circ. Res. 128 (2021) 1885–1912.  doi: 10.1161/circresaha.121.318261

    10. [10]

      M.H. Shishehbor, M.R. Jaff, Circulation 134 (2016) 2008–2027.

    11. [11]

      D. Bos, B. Arshi, Q.J.A. van den Bouwhuijsen, et al., J. Am. Coll. Cardiol. 77 (2021) 1426–1435.

    12. [12]

      J.H. Kwak, J.W. Choi, H.J. Park, et al., Neurointervention 6 (2011) 78–83.  doi: 10.5469/neuroint.2011.6.2.78

    13. [13]

      S. Borhani, S. Hassanajili, S.H. Ahmadi Tafti, S. Rabbani, Prog. Biomater. 7 (2018) 175–205.  doi: 10.1007/s40204-018-0097-y

    14. [14]

      R. Cassano, P. Perri, A. Esposito, et al., Membranes 13 (2023) 240.  doi: 10.3390/membranes13020240

    15. [15]

      Y. Xi, Y. Huang, R. Du, et al., Biomed. Eng. 35 (2018) 307–313.

    16. [16]

      H. Ullrich, M. Olschewski, T. Münzel, T. Gori, Dtsch. Arztebl. Int. 118 (2021) 637–644.

    17. [17]

      A. Krüger-Genge, A. Blocki, R.P. Franke, F. Jung, Int. J. Mol. Sci. 20 (2019) 4411.  doi: 10.3390/ijms20184411

    18. [18]

      F. Nappi, A. Nenna, D. Larobina, et al., Polymers 13 (2021) 446.  doi: 10.3390/polym13030446

    19. [19]

      A. Lamanna, J. Maingard, C.D. Barras, et al., Acta Neurol. Scand. 139 (2019) 318–333.

    20. [20]

      M.A.H. Taha, A. Busuttil, R. Bootun, et al., J. Vasc. Surg. Venous. Lymphat. Disord. 10 (2022) 258–266.

    21. [21]

      Y. Song, H. Jing, L.B. Vong, et al., Chin. Chem. Lett. 33 (2022) 1705–1717.  doi: 10.1016/j.cclet.2021.10.055

    22. [22]

      S. Jebari-Benslaiman, U. Galicia-García, A. Larrea-Sebal, et al., Int. J. Mol. Sci. 23 (2022) 3346.  doi: 10.3390/ijms23063346

    23. [23]

      R. Hassen-Khodja, P.Le Bas, P. Pittaluga, et al., J. Cardiovasc. Surg. 39 (1998) 141–145.

    24. [24]

      S. Déglise, C. Bechelli, F. Allagnat, Front. Physiol. 13 (2023) 1081881.

    25. [25]

      M.H. Khoury, H.L. Gornik, Vasc. Med. 22 (2017) 248–252.

    26. [26]

      G. Lanzino, A.A. Rabinstein, R.D. Brown, Jr., Mayo. Clin. Proc. 84 (2009) 362–368.  doi: 10.4065/84.4.362

    27. [27]

      D.W. Michael, J.R. Marler, M. Goldstein, et al., JAMA. 18 (1995) 1421–1428.  doi: 10.1001/jama.1995.03520420037035

    28. [28]

      W.H. Brooks, M.R. Jones, P. Gisler, et al., JACC. Cardiovasc. Interv. 7 (2014) 163–168.

    29. [29]

      M. Xu, J. Song, Front. Pharmacol. 12 (2021) 623–674.

    30. [30]

      P.W. Serruys, M.C. Morice, A.P. Kappetein, et al., N. Engl. J. Med. 360 (2009) 961–972.  doi: 10.1056/NEJMoa0804626

    31. [31]

      E. Falk, J. Am. Coll. Cardiol. 47 (2006) C7–C12.

    32. [32]

      R.A. Quintana, W.R. Taylor, Circ. Res. 124 (2019) 607–618.  doi: 10.1161/circresaha.118.313187

    33. [33]

      A. López-Candales, D.R. Holmes, S. Liao, et al., Am. J. Cardiovasc. Pathol. 150 (1997) 993–1007.

    34. [34]

      I.O. Peshkova, G. Schaefer, E.K. Koltsova, FEBS J. 283 (2016) 1636–1652.  doi: 10.1111/febs.13634

    35. [35]

      H.C. Dietz, G.R. Cutting, R.E. Pyeritz, et al., Nature 352 (1991) 337–339.

    36. [36]

      E.W. Remus, R.E. O'Donnell, Jr., K. Rafferty, et al., Am. J. Physiol. 303 (2012) 1067–1075.  doi: 10.1152/ajpheart.00217.2012

    37. [37]

      A.G. Matta, N. Yaacoub, V. Nader, et al., World. J. Cardiol. 13 (2021) 446–455.  doi: 10.4330/wjc.v13.i9.446

    38. [38]

      P. Cohen, P.T. O'Gara, Cardiol. Rev. 16 (2008) 301–304.

    39. [39]

      L. Nichols, S. Lagana, A. Parwani, Arch. Pathol. Lab. Med. 132 (2008) 823–828.  doi: 10.5858/2008-132-823-caaara

    40. [40]

      P.G. Hagan, C.A. Nienaber, E.M. Isselbacher, et al., JAMA. 283 (2000) 897–903.  doi: 10.1111/j.1530-0277.2007.00523.x

    41. [41]

      C.A. Nienaber, R.E. Clough, N. Sakalihasan, et al., Nat. Rev. Dis. Primers 2 (2016) 16053.

    42. [42]

      K. Skagen, M. Skjelland, M. Zamani, D. Russell, Croat. Med. J. 57 (2016) 311–320.  doi: 10.3325/cmj.2016.57.311

    43. [43]

      Y. Li, Y. Shi, Y. Lu, et al., Acta Biomater. 167 (2023) 16–37.

    44. [44]

      G.K. Hansson, N. Engl. J. Med. 352 (2005) 1685–1695.

    45. [45]

      D. Ochijewicz, M. Tomaniak, G. Opolski, J. Kochman, Int. J. Cardiovasc. Imag. 37 (2021) 791–801.  doi: 10.1007/s10554-020-02073-3

    46. [46]

      H. Tian, L. Lin, Z. Ba, et al., Chin. Chem. Lett. 32 (2021) 3665–3674.  doi: 10.1016/j.cclet.2021.05.070

    47. [47]

      H. Okura, T. Takagi, K. Yoshida, Curr. Vasc. Pharmacol. 11 (2013) 399–406.  doi: 10.2174/1570161111311040004

    48. [48]

      K. Fadah, D. Patel, K. Mishra, et al., Cureus 13 (2021) 18370.

    49. [49]

      P.W. Serruys, V. Farooq, B. Kalesan, et al., JACC Cardiovasc. Interv. 6 (2013) 777–789.

    50. [50]

      J. Ng, C.V. Bourantas, R. Torii, et al., Arterioscler. Thromb. Vasc. Biol. 37 (2017) 2231–2242.

    51. [51]

      M.C. Alraies, F. Darmoch, R. Tummala, R. Waksman, World. J. Cardiol. 9 (2017) 640–651.  doi: 10.4330/wjc.v9.i8.640

    52. [52]

      C. Nicolais, V. Lakhter, H.U.H. Virk, et al., Curr. Cardiol. Rep. 20 (2018) 7.

    53. [53]

      M.I. Papafaklis, Y.S. Chatzizisis, K.K. Naka, et al., Pharmacol. Chemother. 134 (2012) 43–53.

    54. [54]

      P.W. Serruys, J.A. Ormiston, Y. Onuma, et al., Lancet 373 (2009) 897–910.  doi: 10.1016/S0140-6736(09)60325-1

    55. [55]

      T. Palmerini, G. Biondi-Zoccai, D. Della Riva, et al., Lancet 379 (2012) 1393–1402.

    56. [56]

      S. Adlakha, M. Sheikh, J. Wu, et al., J. Interv. Cardiol. 23 (2010) 411–419.  doi: 10.1111/j.1540-8183.2010.00567.x

    57. [57]

      Y. Gouëffic, J.M. Davaine, Eur. J. Vasc. Endovasc. Surg. 46 (2013) 601–602.

    58. [58]

      J.Y. Park, Y.S. Jeon, S.G. Cho, et al., J. Korean. Surg. Soc. 83 (2012) 183–186.  doi: 10.4174/jkss.2012.83.3.183

    59. [59]

      Y. Lin, X. Tang, W. Fu, et al., J. Endovasc. Ther. 22 (2015) 319–326.  doi: 10.1177/1526602815580783

    60. [60]

      G.H. White, J. May, R.C. Waugh, et al., J. Endovasc. Surg. 5 (1998) 305–309.  doi: 10.1177/152660289800500403

    61. [61]

      P.L. Faries, H. Cadot, G. Agarwal, et al., J. Cardiovasc. Surg. 37 (2003) 1155–1161.  doi: 10.1016/S0741-5214(03)00084-3

    62. [62]

      F.H. Jonker, J. Aruny, B.E. Muhs, Semin. Vasc. Surg. 22 (2009) 165–171.  doi: 10.1053/j.semvascsurg.2009.07.008

    63. [63]

      R. Zuidema, C. van der Riet, M. El Moumni, et al., Eur. J. Pharm. Biopharm. 64 (2022) 475–488.

    64. [64]

      R.S. Dieter, Clin. Cardiol. 23 (2000) 808–810.  doi: 10.1002/clc.4960231129

    65. [65]

      A. Kilic, D.J. Arnaoutakis, T. Reifsnyder, et al., Vasc. Med. 21 (2016) 53–60.

    66. [66]

      M.K. Deiparine, J.L. Ballard, F.C. Taylor, D.R. Chase, J. Cardiovasc. Surg. 23 (1996) 529–533.

    67. [67]

      B.A. Kaufmann, C. Kaiser, M.E. Pfisterer, P.O. Bonetti, Schweiz. Med. Wochenschr. 135 (2005) 483–487.

    68. [68]

      F. Ahadi, M. Azadi, M. Biglari, et al., Heliyon 9 (2023) 13575.

    69. [69]

      H. Lu, M.J. Grundeken, K.T. Koch, J.J. Wykrzykowska, Minerva. Cardioangiol. 61 (2013) 547–562.  doi: 10.5935/abc.20130196

    70. [70]

      C. Tian, B. Liu, J. Liu, et al., Am. J. Transl. Res. 13 (2021) 1607–1616.

    71. [71]

      R.O. Han, R.S. Schwartz, Y. Kobayashi, et al., Am. J. Cardiol. 88 (2001) 253–259.  doi: 10.1016/s0002-9149(01)01636-8

    72. [72]

      V. Finazzi, A.G. Demir, C.A. Biffi, et al., J. Manuf. Mater. Process. 55 (2020) 161–173.

    73. [73]

      T. Schmidt, J.D. Abbott, J. Clin. Med. 7 (2018) 126.  doi: 10.3390/jcm7060126

    74. [74]

      Z.Z. Sheng, X. Liu, L.L. Min, et al., Chin. Chem. Lett. 28 (2017) 1131–1134.  doi: 10.1016/j.cclet.2017.03.033

    75. [75]

      M. Vardi, J. Perez, P.J. Griffin, et al., Int. J. Cardiol. 114 (2014) 528–533.

    76. [76]

      P. Zocca, M.M. Kok, K. Tandjung, et al., JACC. Cardiovasc. Interv. 11 (2018) 462–469.

    77. [77]

      G. Sarno, B. Lagerqvist, J. Carlsson, et al., Int. J. Cardiol. 167 (2013) 146–150.

    78. [78]

      S.W. Rha, B.G. Choi, S.Y. Choi, et al., J. Am. Coll. Cardiol. 65 (2015) 68.

    79. [79]

      H. Liu, Y.X. Leng, G. Wan, N. Huang, Surf. Coat. Technol. 206 (2011) 893–896.

    80. [80]

      K. Kapnisis, G. Constantinides, H. Georgiou, et al., J. Mech. Behav. Biomed. Mater. 40 (2014) 240–251.  doi: 10.1016/j.jmbbm.2014.09.010

    81. [81]

      M. Kovochich, A. Monnot, D.G. Kougias, et al., Regul. Toxicol. Pharm. 122 (2021) S13–S21.

    82. [82]

      E.C. Perin, Mol. Rev. Cardiovasc. Med. 1 (2005) 13–21.

    83. [83]

      C.P.O. Yang, C.P. Hsu, W.Y. Chen, et al., J. Vasc. Surg. 55 (2012) 1600–1610.

    84. [84]

      J. Fu, Y. Su, Y.X. Qin, et al., Biomaterials 230 (2020) 119641.

    85. [85]

      R. He, E. Langi, R. Garrard, et al., Med. Eng. Phys. 109 (2022) 103909.

    86. [86]

      P.B. Sick, O. Brosteanu, M. Ulrich, et al., Am. Heart. J. 149 (2005) 681–688.

    87. [87]

      C. Tang, G. Wang, X. Wu, et al., J. Vasc. Surg. 53 (2011) 461–471.  doi: 10.1016/j.jvs.2010.08.020

    88. [88]

      N. Korei, A. Solouk, M. Haghbin Nazarpak, A. Nouri, Mater. Today. Commun. 31 (2022) 1190–1206.

    89. [89]

      S.H. Im, D.H. Im, S.J. Park, et al., Prog. Mater. Sci. 126 (2022) 100922.

    90. [90]

      Q. Wang, Y. Ren, M. Babar Shahzad, et al., Mater. Sci. Eng. C. 77 (2017) 565–571.

    91. [91]

      S. Nagaraja, S.J.L. Sullivan, P.R. Stafford, et al., Acta Biomater. 72 (2018) 424–433.

    92. [92]

      S. Wang, Y. Zhang, Y. Qin, et al., Ceram. Int. 49 (2023) 13405–13413.

    93. [93]

      F. Berti, P.J. Wang, A. Spagnoli, et al., J. Mech. Behav. Biomed. Mater. 113 (2021) 104142.

    94. [94]

      J.M. Schmehl, C. Harder, H.P. Wendel, et al., Cardiovasc. Res. 9 (2008) 255–262.

    95. [95]

      H. Hermawan, Prog. Biomater. 7 (2018) 93–110.  doi: 10.1007/s40204-018-0091-4

    96. [96]

      H. Jahr, Y.G. Li, J. Zhou, et al., Front. Mater. 8 (2021) 628633.

    97. [97]

      M. Peuster, C. Hesse, T. Schloo, et al., Biomaterials 27 (2006) 4955–4962.  doi: 10.1016/j.biomaterials.2006.05.029

    98. [98]

      R. Waksman, R. Pakala, R. Baffour, et al., J. Interv. Cardiol. 21 (2008) 15–20.  doi: 10.1111/j.1540-8183.2007.00319.x

    99. [99]

      D. Pierson, J. Edick, A. Tauscher, et al., J. Biomed. Mater. Res. B 10 (2012) 58–67.  doi: 10.1002/jbm.b.31922

    100. [100]

      X. Ma, G. Wen, J. Polym. Res. 27 (2020) 136.

    101. [101]

      X. Hu, W. Zhao, Z. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107451.  doi: 10.1016/j.cclet.2022.04.049

    102. [102]

      S.W. Baek, D.S. Kim, J.K. Lee, et al., Chem. Eng. J. 470 (2023) 144174.

    103. [103]

      M. Li, M. Jiang, Y. Gao, et al., Bioact. Mater. 11 (2022) 140–153.

    104. [104]

      Y. Li, J. Wang, K. Sheng, et al., Mater. Des. 220 (2022) 110843.

    105. [105]

      M. Bartosch, S. Schubert, F. Berger, Bionanomaterials 16 (2015) 3–17.

    106. [106]

      S. Park, H. Lee, H.E. Kim, et al., Mater. Sci. Eng. C. 127 (2021) 112239.

    107. [107]

      V. Chausse, C. Iglesias, E. Bou-Petit, et al., Polym. Test. 117 (2023) 107817.

    108. [108]

      A. Srivastava, R. Ahuja, P. Bhati, et al., Materialia 10 (2020) 100661.

    109. [109]

      W. Kowalski, M. Dammer, F. Bakczewitz, et al., J. Mech. Behav. Biomed. Mater. 49 (2015) 23–29.

    110. [110]

      W. Hua, W. Shi, K. Mitchell, et al., Chin. J. Mech. Eng-En: AMF 1 (2022) 1209–1245.

    111. [111]

      M. Abbaslou, R. Hashemi, E. Etemadi, Mater. Today. Commun. 35 (2023) 105742.

    112. [112]

      U. Farwa, H.Y. Lee, H. Lim, et al., Int. J. Biol. Macromol. 250 (2023) 126218.

    113. [113]

      Y.P. Kathuria, Int. J. Cardiol. 119 (2007) 380–383.

    114. [114]

      P. Pereira, A.C. Serra, J.F.J. Coelho, Prog. Polym. Mater. Sci. 121 (2021) 101432.

    115. [115]

      S. Kundu, M. Modabber, J.M. You, et al., Cardiovasc. Inter. Rad. 34 (2010) 949–957.

    116. [116]

      C.Y. Hu, Z. Chen, S.J. Wu, et al., Chin. Chem. Lett. 28 (2017) 1905–1909.  doi: 10.1016/j.cclet.2017.07.020

    117. [117]

      J.F. Iglesias, O. Muller, D. Heg, et al., Lancet 394 (2019) 1243–1253.

    118. [118]

      F. Alfonso, Rev. Esp. Cardiol. 66 (2013) 423–426.

    119. [119]

      P.C. Pires, F. Mascarenhas-Melo, K. Pedrosa, et al., Eur. Polym. J. 187 (2023) 111868.

    120. [120]

      N.D. Machado, J.E. Mosquera, R.E. Martini, et al., J. Supercrit. Fluids 191 (2022) 105763.

    121. [121]

      P. Jamshidi, K. Mahmoody, P. Erne, Int. J. Cardiol. 130 (2008) 310–318.  doi: 10.1016/j.ijcard.2008.04.083

    122. [122]

      Y. Farhatnia, A. Tan, A. Motiwala, et al., Biotechnol. Adv. 31 (2013) 524–542.  doi: 10.1016/j.biotechadv.2012.12.010

    123. [123]

      J. Nicolas, C.A. Pivato, M. Chiarito, et al., Cardiovasc. Res. 119 (2023) 631–646.  doi: 10.1093/cvr/cvac105

    124. [124]

      M. Yin, Y. Yuan, C.S. Liu, J. Wang, Biomaterials 30 (2009) 2764–2773.

    125. [125]

      Y.C. Jiang, Y.Y. Guo, H.A. Wang, et al., Int. J. Biol. Macromol. 230 (2023) 123113.

    126. [126]

      S. Maleki, A. Shamloo, F. Kalantarnia, Sci. Rep. 12 (2022) 6179.

    127. [127]

      P.W. Serruys, H. Emanuelsson, W. vanderGiessen, et al., Circulation 93 (1996) 412–422.

    128. [128]

      S.M. Kim, K.S. Park, E. Lih, et al., Acta Biomater. 38 (2016) 143–152.

    129. [129]

      J. Zhang, L. He, X. Xia, et al., Clinics 78 (2023) 100202.

    130. [130]

      J. Dong, M. Pacella, Y. Liu, L. Zhao, Bioact. Mater. 10 (2022) 159–184.

    131. [131]

      A.G. Demir, B. Previtali, Mater. Des. 119 (2017) 338–350.

    132. [132]

      P. Jamshidi, C. Panwisawas, E. Langi, et al., J. Alloys. Compd. 909 (2022) 140.

    133. [133]

      K. Veerubhotla, C.H. Lee, Bioprinting 26 (2022) e00204.

    134. [134]

      W. Jiang, W. Zhao, T. Zhou, et al., Micromachines 13 (2022) 140.  doi: 10.3390/mi13010140

    135. [135]

      A.G. Demir, B. Previtali, Procedia Comput. Sci. 217 (2023) 604–613.

    136. [136]

      S. Han, J. Wu, Bioact. Mater. 17 (2022) 300–319.

    137. [137]

      T. Yi, S. Huang, G. Liu, et al., ACS Appl. Bio Mater. 1 (2018) 193–209.  doi: 10.1021/acsabm.8b00057

    138. [138]

      R. Khalaj, A.G. Tabriz, M.I. Okereke, D. Douroumis, Int. J. Pharm. 609 (2021) 121153.

    139. [139]

      X. Tong, Z. Zhang, K. Fu, et al., Mater. Lett. 341 (2023) 134261.

    140. [140]

      B. Austin, B. Dixon, K. Arif, Mater. Today: Proc. (2023), doi:10.1016/j.matpr.2023.05.406.  doi: 10.1016/j.matpr.2023.05.406

    141. [141]

      J. Domínguez-Robles, T. Shen, V.A. Cornelius, et al., Mater. Sci. Eng. C. Mater. Biol. Appl. 129 (2021) 112375.

    142. [142]

      R. Xiao, X. Feng, W. Liu, et al., Compos. Struct. 306 (2023) 116572.

    143. [143]

      J. Zhou, J. Xu, X. Wang, Y. Shu, Asian. J. Surg. 46 (2023) 1387–1389.

    144. [144]

      J. Lu, X. Hu, T. Yuan, et al., Polymers 14 (2022) 1755.  doi: 10.3390/polym14091755

    145. [145]

      Z. Liu, Z. Zheng, K. Chen, et al., Colloids Surf. B. 180 (2019) 118–126.

    146. [146]

      M.C. Lin, C.W. Lou, J.Y. Lin, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 91 (2018) 404–413.

    147. [147]

      Q. Zheng, P. Dong, Z. Li, et al., Nanotechnol. Rev. 9 (2020) 1137–1146.  doi: 10.1515/ntrev-2020-0056

    148. [148]

      S.K. Norouzi, A. Shamloo, Mater. Sci. Eng. C. 94 (2019) 1067–1076.

    149. [149]

      J. Chan Lee, S. Hwan In, C. Hee Park, C. Sang Kim, Mater. Lett. 331 (2023) 133415.

    150. [150]

      C. Chalony, L. Erik Aguilar, C. Hee Park, C. Sang Kim, Mater. Lett. 291 (2021) 129545.

    151. [151]

      A. Luraghi, F. Peri, L. Moroni, J. Control. Release 334 (2021) 463–484.  doi: 10.1016/j.jconrel.2021.03.033

    152. [152]

      T. Ebrahimi-Nozari, R. Imani, M. Haghbin-Nazarpak, A. Nouri, Int. J. Pharm. 630 (2023) 122437.

    153. [153]

      H. Zhong, J. Huang, J. Wu, J. Du, Nano Res. 15 (2021) 787–804.

    154. [154]

      H. Zhong, J. Huang, M. Luo, et al., Nano Res. 16 (2023) 599–612.  doi: 10.1007/s12274-022-4813-5

    155. [155]

      V. Chausse, E. Casanova-Batlle, C. Canal, et al., Addit. Manuf. 71 (2023) 103568.

    156. [156]

      D. Kersani, J. Mougin, M. Lopez, et al., Eur. J. Pharm. Biopharm. 150 (2020) 156–167.  doi: 10.1016/j.ejpb.2019.12.017

    157. [157]

      L. Chen, J. Li, S. Wang, et al., J. Mater. Res. 33 (2018) 4123–4133.  doi: 10.1557/jmr.2018.410

    158. [158]

      H. Yao, J.A. Li, N. Li, et al., Polymers 9 (2017) 598.  doi: 10.3390/polym9110598

    159. [159]

      B. O'Brien, H. Zafar, A. Ibrahim, J. Zafar, F. Sharif, Ann. Biomed. Eng. 44 (2016) 523–535.  doi: 10.1007/s10439-015-1380-x

    160. [160]

      F. Hu, J. Qi, Y. Lu, H. He, W. Wu, Chin. Chem. Lett. 34 (2023) 108250.  doi: 10.1016/j.cclet.2023.108250

    161. [161]

      Z. Song, Y. Zhao, G. Liu, et al., J. Manuf. Process. 92 (2023) 206–225.

    162. [162]

      L. Shi, S. Chen, F. Zheng, et al., Colloids Surf. A. 658 (2023) 130664.

    163. [163]

      Z.Q. Zhang, B.Z. Li, P.D. Tong, et al., J. Magnesium Alloys (2022) 120–138.

    164. [164]

      E. Hasanpur, A. Ghazavizadeh, A. Sadeghi, M. Haboussi, J. Mech. Behav. Biomed. Mater. 124 (2021) 104768.

    165. [165]

      S.M. Mousavizadeh, Z. He, X. Wang, et al., Mater. Chem. Phys. 308 (2023) 128249.

    166. [166]

      Y.C. Hou, J.A. Li, C. Cao, et al., J. Magnesium Alloys 12 (2023) 120–138.

    167. [167]

      H. Qiu, Q. Tu, P. Gao, et al., Biomaterials 269 (2021) 120626.

    168. [168]

      J. Vishnu, M. Calin, S. Pilz, et al., Surf. Coat. Technol. 396 (2020) 125965.

    169. [169]

      Q. Ma, X. Shi, X. Tan, et al., Bioact. Mater. 6 (2021) 4786–4800.

    170. [170]

      F. Gao, Y. Hu, G. Li, et al., Bioact. Mater. 5 (2020) 611–623.

    171. [171]

      C. Pan, X. Liu, Q. Hong, et al., J. Magnesium Alloys 11 (2023) 48–77.

    172. [172]

      S. Dai, L. Liu, Z. Wang, et al., Mater. Today. Commun. 35 (2023) 106297.

    173. [173]

      M.Y. Fang, B.Y. Wang, X.L. Qu, et al., Chin. Chem. Lett. 35 (2024) 108423.  doi: 10.1016/j.cclet.2023.108423

    174. [174]

      A. Grattoni, J.P. Cooke, Nanomedicine 39 (2022) 102472.

    175. [175]

      Z. Zheng, S. Zhu, M. Lv, Z. Gu, H. Hu, Nano Today 44 (2022) 101453.

    176. [176]

      A. Tan, Y. Farhatnia, A. de Mel, et al., Rev. Mol. Biotechnol. 164 (2013) 151–170.

    177. [177]

      P. Shah, S. Chandra, J. Drug. Delivery. Sci. Technol. 70 (2022) 103224.

    178. [178]

      D.T. Ashby, G. Dangas, R. Mehran, M.B. Leon, Catheter. Cardiovasc. Interv. 56 (2002) 83–102.

    179. [179]

      S. Garg, P.W. Serruys, J. Am. Coll. Cardiol. 56 (2010) 1–42.

    180. [180]

      B. Tomberli, A. Mattesini, G.I. Baldereschi, C. Di Mario, Rev. Esp. Cardiol. 71(2018) 312–319.

    181. [181]

      M.H. Sketch, Jr., M. Ball, B. Rutherford, et al., Am. J. Cardiol. 95 (2005) 8–12.

    182. [182]

      Y.W. Xu, Y.D. Wei, K. Tang, et al., Chin. Med. J. 120 (2007) 1093–1096.  doi: 10.1097/00029330-200706020-00012

    183. [183]

      W. Khan, S. Farah, A.J. Domb, J. Control Release 161 (2012) 703–712.  doi: 10.1016/j.jconrel.2012.02.010

    184. [184]

      D.M. Martin, F.J. Boyle, Med. Eng. Phys. 33 (2011) 148–163.

    185. [185]

      E. Grube, L. Buellesfeld, Expert. Rev. Med. Devices 3 (2006) 731–741.  doi: 10.1586/17434440.3.6.731

    186. [186]

      S. Hassan, M.N. Ali, B. Ghafoor, J. Cardiothorac. Surg. 17 (2022) 20.

    187. [187]

      A. Kastrati, N. Sinha, B.B. Chanana, et al., Indian. Heart. J. 75 (2023) 25–30.

    188. [188]

      A. Akinapelli, J.P. Chen, K. Roy, et al., Curr. Cardiol. Rev. 13 (2017) 139–154.

    189. [189]

      J.J. Wu, J.A. Way, D. Brieger, Heart. Int. 13 (2019) 17–24.

    190. [190]

      M. Werner, A. Schmidt, S. Scheinert, et al., J. Endovasc. Ther. 23 (2016) 92–97.  doi: 10.1177/1526602815620618

    191. [191]

      B. Dave, J. Clin. Diagn. Res. 10 (2016) 1901–1907.

    192. [192]

      C.V. Bourantas, Y. Onuma, V. Farooq, et al., Int. J. Cardiol. 167 (2013) 11–21.

    193. [193]

      M. Haude, H. Ince, R. Toelg, et al., EuroIntervention. 15 (2020) 1375–1382.

    194. [194]

      R. Jabara, L. Pendyala, S. Geva, et al., EuroIntervention Suppl. 5 (2009) 58–64.  doi: 10.4244/EIJV5IFA10

    195. [195]

      S. Verheye, J.A. Ormiston, J. Stewart, et al., JACC. Cardiovasc. Interv. 7 (2014) 89–99.

    196. [196]

      E. Tenekecioglu, V. Farooq, C.V. Bourantas, et al., BMC. Cardiovasc. Disord. 16 (2016) 38.

    197. [197]

      N.S. van Ditzhuijzen, A. Karanasos, J.N. van der Sijde, G. van Soest, E. Regar, Bioabsorbable stent, in: I.K. Jang (Ed.), Cardiovascular OCT Imaging, Springer, Cham, 2015, pp. 179–193.

    198. [198]

      R.J. Cottone, G.L. Thatcher, S.P. Parker, et al., EuroIntervention 5 (2009) 65–71.

    199. [199]

      Y. Zhang, C.V. Bourantas, V. Farooq, et al., Med. Devices 6 (2013) 37–48.

    200. [200]

      D.L. Fischman, M.B. Leon, D.S. Baim, et al., N. Engl. J. Med. 331 (1994) 496–501.

    201. [201]

      J. Iqbal, J. Gunn, P.W. Serruys, Br. Med. Bull. 106 (2013) 193–211.  doi: 10.1093/bmb/ldt009

    202. [202]

      N. Kukreja, Y. Onuma, J. Daemen, P.W. Serruys, Pharmacol. Res. 57 (2008) 171–180.

    203. [203]

      Z.J. Wang, L.L. Chi, Chin. Chem. Lett. 29 (2018) 11–18.  doi: 10.1016/j.cclet.2017.08.050

    204. [204]

      K.S. Park, S.N. Kang, D.H. Kim, et al., Acta Biomater. 111 (2020) 91–101.

    205. [205]

      P. Sareło, M. Duda, M. Gąsior-Głogowska, et al., Materials 13 (2020) 5634.  doi: 10.3390/ma13245634

    206. [206]

      G. Nakazawa, J.F. Granada, C.L. Alviar, et al., JACC Cardiovasc. Interv. 3 (2010) 68–75.

    207. [207]

      Q. Lin, X. Ding, F. Qiu, et al., Biomaterials. 31 (2010) 4017–4025.

    208. [208]

      J. Zhang, H. Song, S. Ji, et al., Nanoscale. 10 (2018) 4179–4188.  doi: 10.1039/c7nr08176f

    209. [209]

      N. Lyu, Z. Du, H. Qiu, et al., Adv. Sci. 7 (2020) 2002330.

    210. [210]

      C.D. Devillard, C.A. Marquette, Front. Bioeng. Biotechnol. 9 (2021) 721843.

    211. [211]

      D. Durán-Rey, V. Crisóstomo, J.A. Sánchez-Margallo, F.M. Sánchez-Margallo, Front. Bioeng. Biotechnol. 9 (2021) 771400.

    212. [212]

      M. Zhu, W. Li, X. Dong, et al., Nat. Commun. 10 (2019) 4620.

    213. [213]

      Y. Zhu, H. Zhang, Y. Zhang, et al., Adv. Mater. 31 (2019) 1805452.

    214. [214]

      A. Giotta Lucifero, M. Baldoncini, N. Bruno, et al., Medicina (B Aires). 57 (2021) 742.  doi: 10.3390/medicina57080742

    215. [215]

      E. Anastasiou, K.O. Lorentz, G.J. Stein, P.D. Mitchell, Lancet Infect. Dis. 14 (2014) 553–554.

    216. [216]

      S. Zhang, F. Zhang, B. Feng, et al., Tissue Eng. Pt. A. 21 (2015) 1173–1183.  doi: 10.1089/ten.tea.2014.0352

    217. [217]

      M. Karsy, J. Guan, A.A. Brock, et al., Curr. Neurol. Neurosci. Rep. 17 (2017) 1–8.  doi: 10.3171/2016.10.JNS161825

    218. [218]

      Q. Chen, T. Yuan, L. Zhang, et al., J. Biomed. Eng. 40 (2023) 566–572.

    219. [219]

      U. Chaudhary, N. Birbaumer, A. Ramos-Murguialday, Nat. Rev. Neurol. 12 (2016) 513–525.  doi: 10.1038/nrneurol.2016.113

    220. [220]

      N. Birbaumer, L.G. Cohen, J. Physiol. 579 (2007) 621–636.  doi: 10.1113/jphysiol.2006.125633

    221. [221]

      U. Chaudhary, N. Mrachacz-Kersting, N. Birbaumer, J. Physiol. 599 (2021) 2351–2359.  doi: 10.1113/jp278775

    222. [222]

      M.F. Mridha, S.C. Das, M.M. Kabir, et al., Sensors 21 (2021) 5746.  doi: 10.3390/s21175746

    223. [223]

      E.C. Leuthardt, D.W. Moran, T.R. Mullen, Front. Neurosci. 15 (2021) 599549.

    224. [224]

      S.A. Raza, N.L. Opie, A. Morokoff, et al., Front. Neurol. 11 (2020) 351.

    225. [225]

      P. Mitchell, S.C.M. Lee, P.E. Yoo, et al., JAMA Neurol. 80 (2023) 270–278.  doi: 10.1001/jamaneurol.2022.4847

    226. [226]

      F.K. Boateng, B.A. Greco, Am. J. Kidney Dis. 61 (2013) 147–160.

    227. [227]

      B.R. Weber, R.S. Dieter, Cardiovasc. Revasc. Med. 20 (2019) 175–176.

    228. [228]

      M. Salvadori, L. Di Maria, A. Rosati, et al., Transplant. Proc. 37 (2005) 1047–1048.

    229. [229]

      S. Khosla, D. Shaw, N. McCarthy, et al., J. Am. Coll. Cardiol. 27 (1996) 111.

    230. [230]

      P. Desgranges, H. Kobeiter, M. Coumbaras, et al., Eur. J. Vasc. Endovasc. Surg. 19 (2000) 406–412.

    231. [231]

      R. Patel, M.F. Conrad, V. Paruchuri, et al., J. Vasc. Surg. 51 (2010) 310–315.

    232. [232]

      V.A. Rodriguez-Rapale, J.L. Martinez-Trabal, Eur. J. Vasc. Endovasc. Surg. 53 (2018) 82–85.

    233. [233]

      M. Rabellino, L. García-Nielsen, T. Zander, et al., Cardiovasc. Inter. Rad. 34 (2010) 109–112.

    234. [234]

      T.J. Kiernan, B.P. Yan, J.D. Eisenberg, et al., Vasc. Med. 15 (2009) 3–7.

    235. [235]

      D. Dabir, A. Feisst, D. Thomas, et al., Cardiovasc. Inter. Rad. 41 (2018) 942–950.  doi: 10.1007/s00270-018-1916-1

    236. [236]

      M. Razavi, W. Marston, S. Black, D. Bentley, P. Neglén, J. Vasc. Surg. Venous Lymphat. Disord. 6 (2018) 192–200.

    237. [237]

      S.M. Shamimi-Noori, T.W.I. Clark, Tech. Vasc. Interv. Radiol. 21 (2018) 113–116.

    238. [238]

      R. Iyer, A.E. Kuriakose, S. Yaman, et al., Int. J. Pharm. 554 (2019) 212–223.

    239. [239]

      S.C. Wong, D.S. Baim, R.A. Schatz, et al., J. Am. Coll. Cardiol. 26 (1995) 704–712.

    240. [240]

      R.J. Laham, K.K.L. Ho, D.S. Baim, et al., J. Am. Coll. Cardiol. 30 (1997) 180–185.

    241. [241]

      N. Mehta, L. Satler, R. Waksman, I. Ben-Dor, Cardiovasc. Revasc. Med. 28 (2021) 147–149.

    242. [242]

      B. Sohrabi, P. Jamshidi, A. Yaghoubi, et al., JACC Cardiovasc. Interv. 7 (2014) 416–423.

    243. [243]

      X. Chen, R. Chang, H. Liu, et al., Bioact. Mater. 24 (2023) 20–25.  doi: 10.53388/pr202303020

    244. [244]

      H. Hermawan, D. Dubé, D. Mantovani, Acta Biomater. 6 (2010) 1693–1697.

    245. [245]

      E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71 (2018) 1–23.

    246. [246]

      J. Wang, Q. An, D. Li, et al., J. Biomed. Nanotechnol. 11 (2015) 1947–1960.  doi: 10.1166/jbn.2015.2138

    247. [247]

      K.S. Liu, C.H. Lee, D. Lee, et al., J. Vasc. Surg. 68 (2018) 597–606.

    248. [248]

      J. Chu, L. Chen, Z. Mo, et al., Acta Biomater. 111 (2020) 102–117.

    249. [249]

      M. Jamshidi, M. Rajabian, M.B. Avery, et al., J. Neurointerv. Surg. 12 (2020) 700–705.  doi: 10.1136/neurintsurg-2019-015555

    250. [250]

      C. Sala, M. Rescaldani, L. Burdick, G.B. Danzi, J. Cardiovasc. Med. 16 (2015) S42–S44.

    251. [251]

      R.R. Saxon, A. Chervu, P.A. Jones, et al., J. Vasc. Interv. Radiol. 24 (2013) 165–173.

    252. [252]

      K. Alagarsamy, A. Fortier, M. Komarasamy, et al., Cardiovasc. Eng. Technol. 7 (2016) 448–454.  doi: 10.1007/s13239-016-0286-6

    253. [253]

      S. Müller-Hülsbeck, Expert Opin. Drug Deliv. 13 (2016) 1639–1644.  doi: 10.1080/17425247.2016.1230098

    254. [254]

      C.P. Campos, M.S. Ribeiro, L.A. Rocha, et al., J. Vasc. Res. 57 (2020) 97–105.  doi: 10.1159/000504849

    255. [255]

      N. Grabow, C.M. Bünger, C. Schultze, in: S. Jos, V. Pascal, N. Marcn, H. Jens (Eds.), International Federation for Medical and Biological Engineering, Springer, Verlag, Berlin, Heidelberg, 2009.

    256. [256]

      L. Mao, L. shen, J. Chen, et al., Sci. Rep. 7 (2017) 46343.

    257. [257]

      P. Zamboni, A. Giaquinta, E. Rimondi, et al., Phlebology 34 (2019) 336–346.  doi: 10.1177/0268355518805686

    258. [258]

      G. Maleux, P. Gillardin, S. Fieuws, et al., Am. J. Roentgenol. 201 (2013) 667–674.

    259. [259]

      J.M.A. van der Bas, P.H.A. Quax, A.C. van den Berg, et al., J. Vasc. Surg. 39 (2004) 850–858.

    260. [260]

      M. Takeuchi, T. Kuratani, S. Miyagawa, et al., J. Thorac. Cardiovasc. Surg. 148 (2014) 1719–1725.

    261. [261]

      J. Liu, H. Zhu, Y. Pei, et al., Biomater. Res. 26 (2022) 15.

    262. [262]

      H. Zhong, O. Matsui, K. Xu, et al., J. Vasc. Surg. 50 (2009) 1433–1443.

    263. [263]

      Y. Watanabe, S. Miyagawa, S. Fukushima, et al., J. Thorac. Cardiovasc. Surg. 148 (2014) 2325–2334.

  • 加载中
    1. [1]

      Xing GaoLuofeng WangJia ChengJialiang ZhaoXueli Liu . Manufacturing process of MOF-based separator for lithium sulfur batteries: A mini review. Chinese Chemical Letters, 2025, 36(8): 110247-. doi: 10.1016/j.cclet.2024.110247

    2. [2]

      Saima PerveenLulu QinMin ZhaoZhengwei DingYingying WangZaicheng NiePengfei Li . Recent development in radical cycloaddition reactions for the synthesis of carbo- and heterocycles. Chinese Chemical Letters, 2026, 37(1): 111886-. doi: 10.1016/j.cclet.2025.111886

    3. [3]

      Qijie GongJian SongYihui SongKai TangPanpan YangXiao WangMin ZhaoLiang OuyangLi RaoBin YuPeng ZhanSaiyang ZhangXiaojin Zhang . New techniques and strategies in drug discovery (2020–2024 update). Chinese Chemical Letters, 2025, 36(3): 110456-. doi: 10.1016/j.cclet.2024.110456

    4. [4]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    5. [5]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    6. [6]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    7. [7]

      Dayang XieQiannan CaoHuapan FangYanhui LiHuayu Tian . Applications and challenges of biomedical polymer materials in pulmonary diseases. Chinese Chemical Letters, 2026, 37(2): 111032-. doi: 10.1016/j.cclet.2025.111032

    8. [8]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    9. [9]

      Mengwei YeQingqing XuHuanhuan JianYiduo DingWenpeng ZhaoChenxiao WangJunya LuShuaipeng FengSiling WangQinfu Zhao . Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics. Chinese Chemical Letters, 2025, 36(6): 110221-. doi: 10.1016/j.cclet.2024.110221

    10. [10]

      Weiwei HeHongbo ZhangXudong LinLili ZhuTingting ZhengHao PeiYang TianMin ZhangGuoyue ShiLei WuJianlong ZhaoGulinuer WumaierShengqing LiYufang XuHonglin LiXuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    13. [13]

      Lian JinJuan ZhangLibo NieYan DengGhulam Jilany KhanaNongyue He . Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases. Chinese Chemical Letters, 2025, 36(10): 110774-. doi: 10.1016/j.cclet.2024.110774

    14. [14]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    15. [15]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    16. [16]

      Zhaoyu JinRenjun GuanXin LiDunyi YuanPanpan Li . Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes. Chinese Chemical Letters, 2025, 36(7): 110506-. doi: 10.1016/j.cclet.2024.110506

    17. [17]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    18. [18]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    19. [19]

      Pan ZhouTing ZouHong-Jian SongYu-Xiu LiuQing-Min Wang . Advances in organoelectrochemical copper-catalyzed reactions. Chinese Chemical Letters, 2026, 37(1): 111673-. doi: 10.1016/j.cclet.2025.111673

    20. [20]

      Tingting DuSiyu LuZongnan ZhuMei ZhuYan ZhangJian ZhangJixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912

Metrics
  • PDF Downloads(1)
  • Abstract views(1127)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return