sp1-Hybridized linear and cyclic carbon chain
-
* Corresponding author.
E-mail address: shilei26@mail.sysu.edu.cn (L. Shi).
Citation:
Huiju Cao, Lei Shi. sp1-Hybridized linear and cyclic carbon chain[J]. Chinese Chemical Letters,
;2025, 36(4): 110466.
doi:
10.1016/j.cclet.2024.110466
H.W. Kroto, J.R. Heath, S.C. O'Brien, et al., Nature 318 (1985) 162–163.
doi: 10.1038/318162a0
S. Iijima, Nature 354 (1991) 56–58.
doi: 10.1038/354056a0
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
R.B. Heimann, S.E. Evsvukov, Y. Koga, Carbon 35 (1997) 1654–1658.
doi: 10.1016/S0008-6223(97)82794-7
H.R.B. Kudryavtsev Y P, S E Evsyukov, J. Mater. Sci. 3 (1996) 5557–5571.
R.B. Heimann, S. Evsyukov, L. Kavan, Carbyne and Carbynoid Structures, 1st. Ed, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.
G. Yang, Mater. Sci. Eng. R Rep. 151 (2022) 100692.
doi: 10.1016/j.mser.2022.100692
K. Raghavachari, D.L. Strout, G.K. Odom, et al., Chem. Phys. Lett. 214 (1993) 357–361.
doi: 10.1016/0009-2614(93)85650-D
J. Hutter, H.P. Luethi, F. Diederich, J. Am. Chem. Soc. 116 (1994) 750–756.
doi: 10.1021/ja00081a041
W.A. Chalifoux, R.R. Tykwinski, Nat. Chem. 2 (2010) 967–971.
doi: 10.1038/nchem.828
Y. Gao, Y. Hou, F. Gordillo Gámez, et al., Nat. Chem. 12 (2020) 1143–1149.
doi: 10.1038/s41557-020-0550-0
A. Arora, S.D. Baksi, N. Weisbach, et al., ACS Cent. Sci. 9 (2023) 2225–2240.
doi: 10.1021/acscentsci.3c01090
C.W. Patrick, Y. Gao, P. Gupta, et al., Nat. Chem. 16 (2023) 193–200.
L. Shi, P. Rohringer, K. Suenaga, et al., Nat. Mater. 15 (2016) 634–639.
doi: 10.1038/nmat4617
F. Albrecht, I. Rončević, Y. Gao, et al., Science 384 (2024) 677–682.
doi: 10.1126/science.ado1399
L. Sun, W. Zheng, W. Gao, et al., Nature 623 (2023) 972–976.
doi: 10.1038/s41586-023-06741-x
Y. Gao, F. Albrecht, I. Rončević, et al., Nature 623 (2023) 977–981.
doi: 10.1038/s41586-023-06566-8
K. Kaiser, L.M. Scriven, F. Schulz, et al., Science 365 (2019) 1299–1301.
doi: 10.1126/science.aay1914
A.G. Whittaker, Nature 276 (1978) 695–696.
doi: 10.1038/276695a0
X. Liu, G. Zhang, Y.W. Zhang, J. Phys. Chem. C 119 (2015) 24156–24164.
doi: 10.1021/acs.jpcc.5b08026
J. Szczepanski, J. Fuller, S. Ekern, et al., Spectrochim. Acta Part A 57 (2001) 775–786.
doi: 10.1016/S1386-1425(00)00443-1
A. Karpfen, J. Phys. C: Solid State Phys. 12 (1979) 3227.
doi: 10.1088/0022-3719/12/16/011
D. Wendinger, J.A. Januszewski, F. Hampel, et al., Chem. Commun. 51 (2015) 14877–14880.
doi: 10.1039/C5CC05679A
J.A. Januszewski, R.R. Tykwinski, Chem. Soc. Rev. 43 (2014) 3184–3203.
doi: 10.1039/C4CS00022F
E.C. Kenneth, S. Pitzer, J. Am. Chem. Soc. 81 (1959) 4477–4485.
doi: 10.1021/ja01526a010
P. Siemsen, R.C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 39 (2000) 2632–2657.
doi: 10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F
A.S. Hay, J. Org. Chem. 27 (1962) 3320–3321.
doi: 10.1021/jo01056a511
W.A. Chalifoux, R.R. Tykwinski, C.R. Chim. 12 (2009) 341–358.
F. Bohlmann, Polyacetylenen 86 (1953) 657–667.
doi: 10.1002/cber.19530860519
M. Jevric, M.B. Nielsen, Asian J. Org. Chem. 4 (2015) 286–295.
doi: 10.1002/ajoc.201402261
C.W. Patrick, J.F. Woods, P. Gawel, et al., Angew. Chem. Int. Ed. 61 (2022) e202116897.
doi: 10.1002/anie.202116897
N. Weisbach, Z. Baranová, S. Gauthier, et al., Chem. Commun. 48 (2012) 7562–7564.
doi: 10.1039/c2cc33321j
D. Wendinger, R.R. Tykwinski, Acc. Chem. Res. 50 (2017) 1468–1479.
doi: 10.1021/acs.accounts.7b00164
P. Gawel, S.L. Woltering, Y. Xiong, et al., Angew. Chem. Int. Ed. 60 (2021) 5941–5947.
doi: 10.1002/anie.202013623
V. Scuderi, S. Scalese, S. Bagiante, et al., Carbon 47 (2009) 2134–2137.
doi: 10.1016/j.carbon.2009.04.010
X. Song, Y. Liu, J. Zhu, Carbon 44 (2006) 1584–1586.
doi: 10.1016/j.carbon.2006.01.023
M. Jinno, S. Bandow, Y. Ando, Chem. Phys. Lett. 398 (2004) 256–259.
doi: 10.1016/j.cplett.2004.09.064
Y.A. Kim, H. Muramatsu, T. Hayashi, et al., Carbon 50 (2012) 4588–4595.
doi: 10.1016/j.carbon.2012.05.044
C.T. Kingston, B. Simard, Anal. Lett. 36 (2003) 3119–3145.
doi: 10.1081/AL-120026564
F. Cataldo, Carbon 42 (2004) 129–142.
doi: 10.1016/j.carbon.2003.10.016
F. Cataldo, Tetrahedron Lett. 45 (2004) 141–144.
doi: 10.1016/j.tetlet.2003.10.100
F. Cataldo, Polyhedron 23 (2004) 1889–1896.
doi: 10.1016/j.poly.2004.04.024
Y. Wu, Y. Zhang, T. Zhu, et al., Chem. Phys. Lett. 730 (2019) 64–69.
doi: 10.1016/j.cplett.2019.05.040
H. Li, Y. Wu, Y. Zhang, et al., Chem. Phys. 535 (2020) 110804.
doi: 10.1016/j.chemphys.2020.110804
Y.F. Zhang, Chin. Phys. B 31 (2022) 125201.
doi: 10.1088/1674-1056/ac833f
X. Zhao, Y. Ando, Y. Liu, et al., Phys. Rev. Lett. 90 (2003) 187401.
doi: 10.1103/PhysRevLett.90.187401
E. Cazzanelli, M. Castriota, L.S. Caputi, et al., Phys. Rev. B 75 (2007) 121405.
doi: 10.1103/PhysRevB.75.121405
N.F. Andrade, T.L. Vasconcelos, C.P. Gouvea, et al., Carbon 90 (2015) 172–180.
doi: 10.1016/j.carbon.2015.04.001
L. Kavan, Chem. Rev. 97 (1997) 3061–3082.
doi: 10.1021/cr960003n
T.T. Masaharu Tsuji, Shingo Kuboyama, Seong-Ho Yoon, et al., Chem. Phys. Lett. 355 (2002) 101–108.
doi: 10.1016/S0009-2614(02)00192-6
R. Matsutani, T. Kakimoto, K. Wada, et al., Carbon 46 (2008) 1103–1106.
doi: 10.1016/j.carbon.2008.03.009
R. Matsutani, F. Ozaki, R. Yamamoto, et al., Carbon 47 (2009) 1659–1663.
doi: 10.1016/j.carbon.2009.02.026
K. Inoue, R. Matsutani, T. Sanada, et al., Carbon 48 (2010) 4209–4211.
doi: 10.1016/j.carbon.2010.07.020
R. Matsutani, K. Inoue, T. Sanada, et al., J. Photochem. Photobiol. A 240 (2012) 1–4.
doi: 10.1016/j.jphotochem.2012.05.004
P. Marabotti, S. Peggiani, A. Vidale, et al., Chin. Phys. B 31 (2022) 125202.
doi: 10.1088/1674-1056/ac81b2
P. Marabotti, S. Peggiani, S. Melesi, et al., Small (2024) 2403054.
B. Pan, J. Xiao, J. Li, et al., Sci. Adv. 1 (2015) e1500857.
doi: 10.1126/sciadv.1500857
P. Tarakeshwar, P.R. Buseck, H.W. Kroto, J. Phys. Chem. Lett. 7 (2016) 1675–1681.
doi: 10.1021/acs.jpclett.6b00671
H. Kim, P. Tarakeshwar, M. Meneghetti, et al., Carbon 205 (2023) 546–551.
doi: 10.1016/j.carbon.2023.01.060
W. Gao, C. Zhang, Z. Zhou, et al., Chin. Phys. B 31 (2022) 128101.
doi: 10.1088/1674-1056/ac7f90
L. Shang, F. Kang, W. Gao, et al., Nanomaterials 12 (2022) 137.
Q. Sun, L. Cai, S. Wang, et al., J. Am. Chem. Soc. 138 (2016) 1106–1109.
doi: 10.1021/jacs.5b10725
X. Yu, X. Li, H. Lin, et al., J. Am. Chem. Soc. 142 (2020) 8085–8089.
doi: 10.1021/jacs.0c01925
W. Gao, F. Kang, X. Qiu, et al., ACS Nano 16 (2022) 6578–6584.
doi: 10.1021/acsnano.2c00945
W. Gao, L. Cai, F. Kang, et al., J. Am. Chem. Soc. 145 (2023) 6203–6209.
doi: 10.1021/jacs.2c12292
W. Gao, W. Zheng, L. Sun, et al., Natl. Sci. Rev. 11 (2024) nwae031.
doi: 10.1093/nsr/nwae031
C. Jin, H. Lan, L. Peng, et al., Phys. Rev. Lett. 102 (2009) 205501.
doi: 10.1103/PhysRevLett.102.205501
O. Cretu, A.R. Botello-Mendez, I. Janowska, et al., Nano Lett. 13 (2013) 3487–3493.
doi: 10.1021/nl4018918
H.E. Troiani, M. Miki-Yoshida, G.A. Camacho-Bragado, et al., Nano Lett. 3 (2003) 751–755.
doi: 10.1021/nl0341640
R. Senga, H.P. Komsa, Z. Liu, et al., Nat. Mater. 13 (2014) 1050–1054.
doi: 10.1038/nmat4069
C. Fantini, E. Cruz, A. Jorio, et al., Phys. Rev. B 73 (2006).
L. Shi, L. Sheng, L. Yu, et al., Nano Res. 4 (2011) 759–766.
doi: 10.1007/s12274-011-0132-y
C. Zhao, R. Kitaura, H. Hara, et al., J. Phys. Chem. C 115 (2011) 13166–13170.
doi: 10.1021/jp201647m
J. Zhang, Y. Feng, H. Ishiwata, et al., ACS Nano 6 (2012) 8674–8683.
doi: 10.1021/nn303461q
L. Shi, K. Yanagi, K. Cao, et al., ACS Nano 12 (2018) 8477–8484.
doi: 10.1021/acsnano.8b04006
L.M. Malard, D. Nishide, L.G. Dias, et al., Phys. Rev. B 76 (2007) 233412.
doi: 10.1103/PhysRevB.76.233412
D. Nishide, H. Dohi, T. Wakabayashi, et al., Chem. Phys. Lett. 428 (2006) 356–360.
doi: 10.1016/j.cplett.2006.07.016
W. Chang, F. Liu, Y. Liu, et al., Carbon 183 (2021) 571–577.
doi: 10.1016/j.carbon.2021.07.037
K. Asaka, S. Toma, Y. Saito, SN Appl. Sci. 1 (2019) 493.
doi: 10.1007/s42452-019-0481-9
H.L. Anderson, C.W. Patrick, L.M. Scriven, et al., B. Chem. Soc. Jpn. 94 (2021) 798–811.
doi: 10.1246/bcsj.20200345
C. Lifshitz, Int. J. Mass Spectrom. 200 (2000) 423–442.
doi: 10.1016/S1387-3806(00)00350-X
W. Weltner Jr., K.R. Thompson, R.L. DeKock, J. Am. Chem. Soc. 93 (1971) 4688–4695.
doi: 10.1021/ja00748a007
A.E. Boguslavskiy, J.P. Maier, Phys. Chem. Chem. Phys. 9 (2007) 127–130.
doi: 10.1039/B613109C
F. Diederich, Y. Rubin, C.B. Knobler, et al., Science 245 (1989) 1088–1090.
doi: 10.1126/science.245.4922.1088
F. Diederich, Y. Rubin, O.L. Chapman, et al., Helv. Chim. Acta 77 (2004) 1441–1457.
Y. Tobe, R. Umeda, N. Iwasa, et al., Chem. Eur. J. 9 (2003) 5549–5559.
doi: 10.1002/chem.200305051
Y. Rubin, M. Kahr, C.B. Knobler, et al., J. Am. Chem. Soc. 113 (1991) 495–500.
doi: 10.1021/ja00002a017
Y. Tobe, T. Fujii, H. Matsumoto, et al., J. Am. Chem. Soc. 122 (2000) 1762–1775.
doi: 10.1021/ja993314z
L.M. Scriven, K. Kaiser, F. Schulz, et al., J. Am. Chem. Soc. 142 (2020) 12921–12924.
doi: 10.1021/jacs.0c05033
C.S. Casari, M. Tommasini, R.R. Tykwinski, et al., Nanoscale 8 (2016) 4414–4435.
doi: 10.1039/C5NR06175J
A. Milani, M. Tommasini, V. Russo, et al., Beilstein J. Nanotechnol. 6 (2015) 480–491.
doi: 10.3762/bjnano.6.49
A. Milani, M. Tommasini, D. Fazzi, et al., J. Raman Spectrosc. 39 (2007) 164–168.
C.S. Casari, A. Milani, MRS Commun. 8 (2018) 207–219.
doi: 10.1557/mrc.2018.48
Y. Gao, R.R. Tykwinski, Acc. Chem. Res. 55 (2022) 3616–3630.
doi: 10.1021/acs.accounts.2c00662
L. Shi, P. Rohringer, M. Wanko, et al., Phys. Rev. Mater. 1 (2017) 075601.
doi: 10.1103/PhysRevMaterials.1.075601
R. Hoffmann, Angew. Chem. Int. Ed. 26 (1987) 846–878.
doi: 10.1002/anie.198708461
M. Kertesz, S. Yang, Phys. Chem. Chem. Phys. 11 (2009) 425–430.
doi: 10.1039/B812635F
E. Mostaani, B. Monserrat, N.D. Drummond, et al., Phys. Chem. Chem. Phys. 18 (2016) 14810–14821.
doi: 10.1039/C5CP07891A
G. Onida, N. Manini, L. Ravagnan, et al., Phys. Status Solidi B 247 (2010) 2017–2021.
doi: 10.1002/pssb.200983946
N.R. Agarwal, A. Lucotti, D. Fazzi, et al., J. Raman Spectrosc. 44 (2013) 1398–1410.
doi: 10.1002/jrs.4300
C.D. Zeinalipour-Yazdi, D.P. Pullman, J. Phys. Chem. B 112 (2008) 7377–7386.
doi: 10.1021/jp800302s
A.D.S. Sara Eisler, Erin Elliott, Thanh Luu, et al., J. Am. Chem. Soc. 127 (2005) 2666–2676.
doi: 10.1021/ja044526l
M.R. Bryce, J. Mater. Chem. C 9 (2021) 10524–10546.
doi: 10.1039/d1tc01406d
L. Shi, R. Senga, K. Suenaga, et al., Nano Lett. 21 (2021) 1096–1101.
doi: 10.1021/acs.nanolett.0c04482
P. Rohringer, L. Shi, P. Ayala, et al., Adv. Funct. Mater. 26 (2016) 4874–4881.
doi: 10.1002/adfm.201505502
R. Liu, H. Liu, Y. Li, et al., Nanoscale 6 (2014) 11336–11343.
doi: 10.1039/C4NR03185G
P. Ayala, R. Arenal, M. Rümmeli, et al., Carbon 48 (2010) 575–586.
doi: 10.1016/j.carbon.2009.10.009
K. Zhang, J. Li, P. Liu, et al., Chin. Phys. B 31 (2022) 123102.
doi: 10.1088/1674-1056/ac8cde
E.R. Mucciolo, A.H. Castro Neto, C.H. Lewenkopf, Phys. Rev. B 79 (2009) 075407.
doi: 10.1103/PhysRevB.79.075407
Y. Wu, P.A. Childs, Nanoscale Res. Lett. 6 (2010) 62.
doi: 10.1007/s11671-010-9791-y
V.I. Artyukhov, M. Liu, B.I. Yakobson, Nano Lett. 14 (2014) 4224–4229.
doi: 10.1021/nl5017317
A. La Torre, A. Botello-Mendez, W. Baaziz, et al., Nat. Commun. 6 (2015) 6636.
doi: 10.1038/ncomms7636
I.M. Mikhailovskij, E.V. Sadanov, S. Kotrechko, et al., Phys. Rev. B 87 (2013) 045410.
doi: 10.1103/PhysRevB.87.045410
S. Kotrechko, I. Mikhailovskij, T. Mazilova, et al., Nanoscale Res. Lett. 10 (2015) 24.
doi: 10.1186/s11671-015-0761-2
C. Lee, X. Wei, J.W. Kysar, et al., Science 321 (2008) 385–388.
doi: 10.1126/science.1157996
M. Liu, V.I. Artyukhov, H. Lee, et al., ACS Nano 7 (2013) 10075–10082.
doi: 10.1021/nn404177r
E. Gao, R. Li, R.H. Baughman, ACS Nano 14 (2020) 17071–17079.
doi: 10.1021/acsnano.0c06602
G. Schermann, F. Hampel T. Grösser, et al., Chem. Eur. J. 3 (1997) 1105–1112.
doi: 10.1002/chem.19970030718
T. Gibtner, F. Hampel, J.P. Gisselbrecht, et al., Chem. Eur. J. 8 (2002) 408–432.
doi: 10.1002/1521-3765(20020118)8:2<408::AID-CHEM408>3.0.CO;2-L
P. Rohringer, L. Shi, X. Liu, et al., Carbon 74 (2014) 282–290.
doi: 10.1016/j.carbon.2014.03.033
S.C. Shim, Chem. Commun. 23 (1996) 2609–2614.
T. Wakabayashi, H. Nagayama, K. Daigoku, et al., Chem. Phys. Lett. 446 (2007) 65–70.
doi: 10.1016/j.cplett.2007.08.057
J. Zirzlmeier, S. Schrettl, J.C. Brauer, et al., Nat. Commun. 11 (2020) 4797.
doi: 10.1038/s41467-020-18496-4
J. Xiao, J. Li, G. Yang, Small 13 (2017) 1603495.
doi: 10.1002/smll.201603495
S. Kutrovskaya, A. Osipov, S. Baryshev, et al., Nano Lett. 20 (2020) 6502–6509.
doi: 10.1021/acs.nanolett.0c02244
P. Kabaciński, P. Marabotti, D. Fazzi, et al., J. Am. Chem. Soc. 145 (2023) 18382–18390.
doi: 10.1021/jacs.3c04163
A. Kucherik, A. Osipov, V. Samyshkin, et al., Phys. Rev. Lett. 132 (2024) 056902.
doi: 10.1103/PhysRevLett.132.056902
E.B. Barros, H. Son, G.G. Samsonidze, et al., Phys. Rev. B 76 (2007) 045425.
doi: 10.1103/PhysRevB.76.045425
M.A. Pimenta, A. Marucci, S.A. Empedocles, et al., Phys. Rev. B 58 (1998) R16016–R16019.
doi: 10.1103/PhysRevB.58.R16016
H. Kuzmany, Solid-State Spectroscopy: An Introduction, 2nd. Ed, Springer Berlin, Heidelberg, 2009.
A. Lucotti, M. Tommasini, M.D. Zoppo, et al., Chem. Phys. Lett. 417 (2006) 78–82.
doi: 10.1016/j.cplett.2005.10.016
P. Marabotti, M. Tommasini, C. Castiglioni, et al., Carbon 216 (2024) 118503.
doi: 10.1016/j.carbon.2023.118503
A. Milani, A. Lucotti, V. Russo, et al., J. Phys. Chem. C 115 (2011) 12836–12843.
doi: 10.1021/jp203682c
J.S. Dhindsa, E.L. Cotterill, F.L. Buguis, et al., Angew. Chem. Int. Ed. 61 (2022) e202208502.
doi: 10.1002/anie.202208502
F. Hu, C. Zeng, R. Long, et al., Nat. Methods 15 (2018) 194–200.
doi: 10.1038/nmeth.4578
H. Tabata, M. Fujii, S. Hayashi, et al., Carbon 44 (2006) 3168–3176.
doi: 10.1016/j.carbon.2006.07.004
M. Wanko, S. Cahangirov, L. Shi, et al., Phys. Rev. B 94 (2016) 195422.
doi: 10.1103/PhysRevB.94.195422
S. Yang, M. Kertesz, J. Phys. Chem. A 110 (2006) 9771–9774.
doi: 10.1021/jp062701+
C.D. Tschannen, G. Gordeev, S. Reich, et al., Nano Lett. 20 (2020) 6750–6755.
doi: 10.1021/acs.nanolett.0c02632
C.D. Tschannen, M. Frimmer, G. Gordeev, et al., ACS Nano 15 (2021) 12249–12255.
doi: 10.1021/acsnano.1c03893
A. Cupolillo, M. Castriota, E. Cazzanelli, et al., J. Raman Spectrosc. 39 (2008) 147–152.
doi: 10.1002/jrs.1871
Á. Rusznyák, V. Zólyomi, J. Kürti, et al., Phys. Rev. B 72 (2005) 155420.
doi: 10.1103/PhysRevB.72.155420
A. Tapia, L. Aguilera, C. Cab, et al., Carbon 48 (2010) 4057–4062.
doi: 10.1016/j.carbon.2010.07.011
S. Heeg, L. Shi, L.V. Poulikakos, et al., Nano Lett. 18 (2018) 5426–5431.
doi: 10.1021/acs.nanolett.8b01681
K. Sharma, N.L. Costa, Y.A. Kim, et al., Phys. Rev. Lett. 125 (2020) 049901.
doi: 10.1103/PhysRevLett.125.049901
W.Q. Neves, R.S. Alencar, R.S. Ferreira, et al., Carbon 133 (2018) 446–456.
doi: 10.1016/j.carbon.2018.01.084
N.F. Andrade, A.L. Aguiar, Y.A. Kim, et al., J. Phys. Chem. C 119 (2015) 10669–10676.
doi: 10.1021/acs.jpcc.5b00902
X. Yang, C. Lv, Z. Yao, et al., Carbon 159 (2020) 266–272.
doi: 10.1016/j.carbon.2019.12.057
M. Wang, S. Lin, Sci. Rep. 5 (2015) 18122.
doi: 10.1038/srep18122
C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. B 42 (1990) 11276–11283.
doi: 10.1103/PhysRevB.42.11276
E. Hückel, Z. Angew. Phys. 70 (1931) 204–286.
P.W. Fowler, N. Mizoguchi, D.E. Bean, et al., Chem. Eur. J. 15 (2009) 6964–6972.
doi: 10.1002/chem.200900322
Z. Liu, T. Lu, Q. Chen, Carbon 165 (2020) 468–475.
doi: 10.1016/j.carbon.2020.04.099
M.N. Glukhovtsev, B.Y. Simkin, V.I. Minkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, 1st Ed, Wiley, New York, 1994.
T.M. Krygowski, M.K. Cyrański, Tetrahedron 55 (1999) 11143–11148.
doi: 10.1016/S0040-4020(99)00629-8
I. Rončević, F.J. Leslie, M. Rossmannek, et al., J. Am. Chem. Soc. 145 (2023) 26962–26972.
doi: 10.1021/jacs.3c10207
T.M. Krygowski, M.K. Cyrański, Chem. Rev. 101 (2001) 1385–1420.
doi: 10.1021/cr990326u
G.V. Baryshnikov, R.R. Valiev, A.V. Kuklin, et al., J. Phys. Chem. Lett. 10 (2019) 6701–6705.
doi: 10.1021/acs.jpclett.9b02815
N.D. Charistos, A. Muñoz-Castro, Phys. Chem. Chem. Phys. 22 (2020) 9240–9249.
doi: 10.1039/d0cp01252a
M. Li, Z. Gao, Y. Han, et al., Phys. Chem. Chem. Phys. 22 (2020) 4823–4831.
doi: 10.1039/d0cp00167h
Y. Jiang, Y. Wu, J. Deng, et al., Phys. Chem. Chem. Phys. 23 (2021) 8817–8824.
doi: 10.1039/d0cp06256a
Z. Liu, T. Lu, Q. Chen, Carbon 165 (2020) 461–467.
doi: 10.1016/j.carbon.2020.05.023
B. Shi, L. Yuan, T. Tang, et al., Chem. Phys. Lett. 741 (2020) 136975.
doi: 10.1016/j.cplett.2019.136975
M.Z. Rahman, T. Edvinsson, J. Mater. Chem. A 8 (2020) 8234–8237.
doi: 10.1039/c9ta13193k
S. Hussain, H. Chen, Z. Zhang, et al., Chem. Commun. 56 (2020) 2336–2339.
doi: 10.1039/c9cc09130k
S.E. Muller, A.K. Nair, Comput. Mater. Sci. 159 (2019) 187–193.
doi: 10.1016/j.commatsci.2018.12.006
D.M. Guldi, H. Nishihara, L. Venkataraman, Chem. Soc. Rev. 44 (2015) 842–844.
doi: 10.1039/C5CS90010G
M.B. Nielsen, F. Diederich, Chem. Rev. 105 (2005) 1837–1868.
doi: 10.1021/cr9903353
M. Gholami, R.R. Tykwinski, Chem. Rev. 106 (2006) 4997–5027.
doi: 10.1021/cr0505573
A. Moneo, A. González-Orive, S. Bock, et al., Nanoscale 10 (2018) 14128–14138.
doi: 10.1039/c8nr02347f
F. Yang, Z. Zheng, Y. He, et al., Adv. Funct. Mater. 31 (2021) 2104254.
doi: 10.1002/adfm.202104254
S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, et al., Phys. Rev. Lett. 100 (2008) 016602.
doi: 10.1103/PhysRevLett.100.016602
F. Yang, Z. Zheng, Z. Lin, et al., Sens. Actuator. B: Chem. 316 (2020) 128200.
doi: 10.1016/j.snb.2020.128200
S. Kavokina, V. Samyshkin, J. Cao, et al., Nanomaterials 14 (2024) 56.
Z. Zhao, H. Su, P. Zhang, et al., J. Mater. Chem. B 5 (2017) 1650–1657.
doi: 10.1039/C7TB00112F
A.D. Scaccabarozzi, A. Milani, S. Peggiani, et al., J. Phys. Chem. Lett. 11 (2020) 1970–1974.
doi: 10.1021/acs.jpclett.0c00141
S. Pecorario, A.D. Scaccabarozzi, D. Fazzi, et al., Adv. Mater. 34 (2022) 2110468.
doi: 10.1002/adma.202110468
W. Xu, E. Leary, S. Hou, et al., Angew. Chem. Int. Ed. 58 (2019) 8378–8382.
doi: 10.1002/anie.201901228
Zirui Zhu , Peng Liu , Jinhua Wang , Hongbin Zhang , Wei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Rongjian Chen , Jiahui Liu , Caixia Lin , Yuanming Li , Yanhou Geng , Yaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Laiying Zhang , Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633