A nonalternant analogue of pentacene incorporating a non-terminal azulene unit
-
* Corresponding authors.
E-mail addresses: luom3@sustech.edu.cn (M. Luo), xiahp@sustech.edu.cn (H. Xia).
Citation:
Youxiang He, Yongfa Zhu, Ming Luo, Haiping Xia. A nonalternant analogue of pentacene incorporating a non-terminal azulene unit[J]. Chinese Chemical Letters,
;2025, 36(7): 110463.
doi:
10.1016/j.cclet.2024.110463
M. Bendikov, F. Wudl, D.F. Perepichka, Chem. Rev. 104 (2004) 4891–4945.
doi: 10.1021/cr030666m
J.E. Anthony, Chem. Rev. 106 (2006) 5028–5048.
doi: 10.1021/cr050966z
J. Wu, W. Pisula, K. Müllen, Chem. Rev. 107 (2007) 718–747.
doi: 10.1021/cr068010r
J.E. Anthony, Angew. Chem. Int. Ed. 47 (2008) 452–483.
doi: 10.1002/anie.200604045
H.F. Bettinger, M. Doerr, M. Doerr, et al., J. Chem. Theory Comput. 12 (2016) 305–312.
doi: 10.1021/acs.jctc.5b00671
S. Dong, A. Ong, C. Chi, J. Photochem. Photobiol. C: Photochem. Rev. 38 (2019) 27–46.
H. Klauk, W. Radlik, U. Zschieschang, et al., J. Appl. Phys. 92 (2002) 5259–5263.
J.E. Anthony, Angew. Chem. Int. Ed. 47 (2008) 452–483.
doi: 10.1002/anie.200604045
X. Yang, D. Liu, Q. Miao, Angew. Chem. Int. Ed. 53 (2014) 6786–6790.
doi: 10.1002/anie.201403509
X. Yang, X. Shi, N. Aratani, et al., Chem. Sci. 7 (2016) 6176–6181.
M. Murai, S. Iba, H. Ota, et al., Org. Lett. 19 (2017) 5585–5588.
doi: 10.1021/acs.orglett.7b02729
A. Konishi, M. Yasuda, Chem. Lett. 50 (2021) 195–212.
doi: 10.1246/cl.200650
H. Xin, B. Hou, X. Gao, Acc. Chem. Res. 54 (2021) 1737–1753.
doi: 10.1021/acs.accounts.0c00893
Q. Jiang, T. Tao, H. Phan, et al., Angew. Chem. Int. Ed. 57 (2018) 16737–16741.
doi: 10.1002/anie.201810220
X. Yang, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 58 (2019) 17577–17582.
doi: 10.1002/anie.201908643
Y. Han, Z. Xue, G. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 9026–9031.
doi: 10.1002/anie.201915327
X. Zhang, Y. Huang, J. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 3529–3533.
doi: 10.1002/anie.201914416
J. Ma, Y. Fu, E. Dmitrieva, et al., Angew. Chem. Int. Ed. 59 (2020) 5637–5642.
doi: 10.1002/anie.201914716
N. Ogawa, Y. Yamaoka, H. Takikawa, et al., J. Am. Chem. Soc. 142 (2020) 13322–13327.
doi: 10.1021/jacs.0c06156
B. Pigulski, K. Shoyama, F. Würthner, Angew. Chem. Int. Ed. 59 (2020) 15908–15912.
doi: 10.1002/anie.202005376
K. Horii, R. Kishi, M. Nakano, et al., J. Am. Chem. Soc. 144 (2022) 3370–3375.
doi: 10.1021/jacs.2c00476
S. Wang, M. Tang, L. Wu, et al., Angew. Chem. Int. Ed. 61 (2022) e202205658.
A. Ong, T. Tao, Q. Jiang, et al., Angew. Chem. Int. Ed. 61 (2022) e202209286.
doi: 10.1002/anie.202209286
B. Yu, P. Du, J. Guo, et al., Chin. Chem. Lett. 35 (2024) 109321.
L. Ou, Y. Zhou, B. Wu, et al., Chin. Chem. Lett. 30 (2019) 1903–1907.
B. Hou, J. Li, X. Yang, et al., Chin. Chem. Lett. 33 (2022) 2147–2150.
X. Shi, W.X. Kueh, B. Zheng, et al., Angew. Chem. Int. Ed. 54 (2015) 14412–14416.
doi: 10.1002/anie.201507573
H. Xin, J. Li, X. Yang, et al., J. Org. Chem. 85 (2020) 70–78.
doi: 10.1021/acs.joc.9b01724
H. Xin, J. Li, R. Lu, et al., J. Am. Chem. Soc. 142 (2020) 13598–13605.
doi: 10.1021/jacs.0c06299
C. Zhu, K. Shoyama, F. Würthner, Angew. Chem. Int. Ed. 59 (2020) 21505–21509.
doi: 10.1002/anie.202010077
Y. Zhang, C. Yu, Z. Huang, et al., Acc. Chem. Res. 54 (2021) 2323–2333.
doi: 10.1021/acs.accounts.1c00146
M. Luo, D. Chen, Q. Li, et al., Acc. Chem. Res. 56 (2023) 924–937.
doi: 10.1021/acs.accounts.2c00750
Y. Hua, D. Chen, Z. Lu, et al., Natl. Sci. Rev. 10 (2023) nwad325.
doi: 10.1093/nsr/nwad325
X. Yang, M. Zhang, S. Liu, et al., Chem. Asian J. 19 (2024) e202300860.
doi: 10.1002/asia.202300860
D. Chen, Y. Hua, H. Xia, Chem. Rev. 120 (2020) 12994–13086.
doi: 10.1021/acs.chemrev.0c00392
B.J. Frogley, L.J. Wright, Chem. Eur. J. 24 (2018) 2025–2038.
doi: 10.1002/chem.201704888
K. Zhuo, Y. Liu, K. Ruan, et al., Nat. Synth. 2 (2023) 67–75.
Y. Zhu, D. Chen, M. Luo, et al., Chin. J. Chem. 42 (2024) 2765–2772.
doi: 10.1002/cjoc.202400409
M. Paneque, E. Oñate, K. Mereiter, et al., J. Am. Chem. Soc. 125 (2003) 9898–9899.
C. Tang, J. Zhu, H. Xia, et al., J. Am. Chem. Soc. 143 (2021) 15587–15592.
doi: 10.1021/jacs.1c08106
B.J. Frogley, P.L.J. Wright, Angew. Chem. Int. Ed. 56 (2017) 143–147.
doi: 10.1002/anie.201608500
W. Ruan, T. Leung, C. Shi, et al., Chem. Sci. 9 (2018) 5994–5998.
doi: 10.1039/c8sc02086h
H. Liu, K. Ruan, K. Ma, et al., Nat. Commun. 14 (2023) 5583.
doi: 10.1038/s41467-023-41250-5
Y. Hu, J. Zhang, X. Wang, et al., Chem. Sci. 10 (2019) 10894–10899.
doi: 10.1039/c9sc03914g
M. Talavera, A. Peña-Gallego, J.L. Alonso-Gómez, et al., Chem. Commun. 54 (2018) 10974–10976.
doi: 10.1039/c8cc06443a
M. Zhang, Z. Xu, T. Lu, et al., Chem. Eur. J. 24 (2018) 14891–14895.
doi: 10.1002/chem.201803576
C. Tang, S. Zhang, Z. Lu, et al., Chin. J. Chem. 42 (2024) 235–242.
doi: 10.1002/cjoc.202300476
Z. Chu, J. Li, D. Chen, et al., Chin. J. Chem. 41 (2023) 1987–1993.
doi: 10.1002/cjoc.202300116
P.M. Saha, A. Mallick, A.T. Turley, et al., Nat. Chem. 15 (2023) 516–525.
doi: 10.1038/s41557-023-01149-6
Z. Chen, C.S. Wannere, C. Corminboeuf, et al., Chem. Rev. 105 (2005) 3842–3888.
doi: 10.1021/cr030088+
H. Fallah-Bagher-Shaidaei, C.S. Wannere, C. Corminboeuf, et al., Org. Lett. 8 (2006) 863–866.
doi: 10.1021/ol0529546
R. Herges, D. Geuenich, J. Phys. Chem. A 105 (2001) 3214–3220.
D. Geuenich, K. Hess, F. Kohler, et al., Chem. Rev. 105 (2005) 3758–3772.
doi: 10.1021/cr0300901
X. Gao, Z. Zhao, Sci. China Chem. 58 (2015) 947–968.
doi: 10.1007/s11426-015-5399-5
H. Xin, X. Gao, Chempluschem 82 (2017) 945–956.
doi: 10.1002/cplu.201700039
S. Chen, L. Liu, X. Gao, et al., Nat. Commun. 11 (2020) 4651–4662.
T.A. Albright, J.K. Burdett, M.H. Whangbo, Orbital Interactions in Chemistry, 2nd ed., Wiley, Hoboken, 2013.
Jiaxiang Guo , Zeyi Li , Tianyu Zhang , Xinyu Tian , Yue Wang , Chuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337
Bo Yu , Pengchen Du , Jianwen Guo , Hanshen Xin , Jianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Yutong Xiong , Ting Meng , Wendi Luo , Bin Tu , Shuai Wang , Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
Kun Wang , Tianxue Gong , Yaohuang Huang , Boyang Han , Hanxiao Yang , Pavlo O. Dral , Weiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Jieshuai Xiao , Yuan Zheng , Yue Zhao , Zhuangzhi Shi , Minyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243
Fengqing Wang , Changxing Qi , Chunmei Chen , Qin Li , Qingyi Tong , Weiguang Sun , Zhengxi Hu , Minyan Wang , Hucheng Zhu , Lianghu Gu , Yonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
Shuqi Chen , Cankun Zhang , Xiaonuo Dong , Hui-Jun Zhang , Jianbin Lin . Synthesis and photophysical properties of alternating donor-acceptor conjugated nanorings. Chinese Chemical Letters, 2025, 36(6): 110354-. doi: 10.1016/j.cclet.2024.110354
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Quan Zhou , Xiao-Min Chen , Xujie Qin , Zhe-Ning Chen , Jun Chen , Wei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Shicheng Dong , Jun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436