Citation: Ali Dai, Zhiguo Zheng, Liusheng Duan, Jian Wu, Weiming Tan. Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals[J]. Chinese Chemical Letters, ;2025, 36(4): 110462. doi: 10.1016/j.cclet.2024.110462 shu

Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals

    * Corresponding authors.
    E-mail addresses: jwu6@gzu.edu.cn (J. Wu), tanwm@cau.edu.cn (W. Tan).
    1 These authors contributed equally to this work.
  • Received Date: 9 July 2024
    Revised Date: 30 August 2024
    Accepted Date: 13 September 2024
    Available Online: 14 September 2024

Figures(8)

  • Agrochemicals, especially plant growth regulators (PGRs), are extensively used to modulate endogenous phytohormone signals in small quantities, significantly influencing plant growth and development. Plant hormones typically exhibit diverse chemical structures, with common examples including indole rings, terpenoid frameworks, adenine motifs, cyclic lactones, cyclopentanones, and steroidal compounds, which are extensively employed in pesticides. This article explores the interactions and biological activities of small molecules on proteins, enzymes, and other reactive sites involved in the biosynthesis, metabolism, transport, and signal transduction pathways of various plant hormones. Additionally, it analyzes the structure-activity relationships (SARs) of pesticides incorporating these structural motifs to elucidate the relationship between active fragments, pharmacophores, and targets, highlighting the characteristics of potent small molecules and their derivatives. This comprehensive review aims to provide novel perspectives for the development and design of pesticides, offering valuable insights for researchers in the field.
  • 加载中
    1. [1]

      Y. Wang, S.X. Guo, L.J. Yu, et al., Chin. Chem. Lett. 35 (2024) 108207.

    2. [2]

      A.L. Dai, Z.G. Zheng, Y.Q. Huang, et al., Heliyon 8 (2022) e12391.

    3. [3]

      S. Katel, H.R. Mandal, S. Kattel, S.P.S. Yadav, B.S. Lamshal, Heliyon 8 (2022) e11959.

    4. [4]

      D.K. Tripathi, S.R. Yadav, K. Mochida, L.S.P. Tran, Plant Cell Physiol. 63 (2023) 1757–1760.  doi: 10.1093/pcp/pcac170

    5. [5]

      B. Desta, G. Amare, Chem. Biol. Technol. Agric. 8 (2021) 15.

    6. [6]

      B. Noein, A. Soleymani, J. Plant Growth Regul. 41 (2022) 672–681.  doi: 10.1007/s00344-021-10332-3

    7. [7]

      J. Takeuchi, K. Fukui, Y. Seto, Y. Takaoka, M. Okamoto, Plant J. 105 (2021) 290–306.  doi: 10.1111/tpj.15115

    8. [8]

      A. Bajguz, A. Piotrowska-Niczyporuk, Metabolites 13 (2023) 884.  doi: 10.3390/metabo13080884

    9. [9]

      S. Hagihara, R. Yamada, K. Itami, K.U. Torii, Curr. Opin. Plant Biol. 47 (2019) 32–37.

    10. [10]

      V. Gomez-Roldan, S. Fermas, P.B. Brewer, et al., Nature 455 (2008) 189–194.  doi: 10.1038/nature07271

    11. [11]

      R.D. Crapnell, P.S. Adarakatti, C.E. Banks, Anal. Methods 15 (2023) 4811–4826.  doi: 10.1039/d3ay01053h

    12. [12]

      Z.Y. Lv, L. Zhang, K.X. Tang, Plant Signaling Behav. 12 (2017) e1366398.  doi: 10.1080/15592324.2017.1366398

    13. [13]

      S.A.J. Messing, S.B. Gabelli, I. Echeverria, et al., Plant Cell 22 (2010) 2970–2980.  doi: 10.1105/tpc.110.074815

    14. [14]

      A. Rigal, Q. Ma, S. Robert, Front. Plant Sci. 5 (2014) 373.

    15. [15]

      K. Jiang, T. Asami, Biosci. Biotechnol. Biochem. 82 (2018) 1265–1300.  doi: 10.1080/09168451.2018.1462693

    16. [16]

      S.Y. Park, P. Fung, N. Nishimura, et al., Science 324 (2009) 1068–1071.  doi: 10.1126/science.1173041

    17. [17]

      R. Varela, A.E. Cleves, R. Spitzer, A.N. Jain, J. Comput-Aided. Mol. Des. 27 (2013) 917–934.  doi: 10.1007/s10822-013-9688-9

    18. [18]

      M. Lavy, M. Estelle, Development 143 (2016) 3226–3229.  doi: 10.1242/dev.131870

    19. [19]

      H. Kasahara, Biosci. Biotechnol. Biochem. 80 (2016) 34–42.  doi: 10.1080/09168451.2015.1086259

    20. [20]

      O. Leyser, Plant Physiol. 176 (2018) 465–479.  doi: 10.1104/pp.17.00765

    21. [21]

      W. He, J. Brumos, H. Li, et al., Plant Cell 23 (2011) 3944–3960.  doi: 10.1105/tpc.111.089029

    22. [22]

      J. Basran, E.S. Booth, L.P. Campbell, et al., J. Inorg. Biochem. 225 (2021) 111604.

    23. [23]

      D.M. Eklund, K. Ishizaki, E. Flores-Sandoval, et al., Plant Cell 27 (2015) 1650–1669.  doi: 10.1105/tpc.15.00065

    24. [24]

      Y. Kakei, C. Yamazaki, M. Suzuki, et al., Plant J. 84 (2015) 827–837.  doi: 10.1111/tpj.13032

    25. [25]

      T. Nishimura, K. Hayashi, H. Suzuki, et al., Plant J. 77 (2014) 352–366.  doi: 10.1111/tpj.12399

    26. [26]

      S. Tsugafune, K. Mashiguchi, K. Fukui, et al., Sci. Rep. 7 (2017) 13992.

    27. [27]

      Y. Kakei, A. Nakamura, M. Yamamoto, et al., Plant Cell Physiol. 58 (2017) 598–606.

    28. [28]

      P. Xu, H. Jinbo, W. Cai, New Phytol. 236 (2022) 1748–1761.  doi: 10.1111/nph.18459

    29. [29]

      W. Teale, K. Palme, J. Exp. Bot. 69 (2018) 303–312.  doi: 10.1093/jxb/erx323

    30. [30]

      J.Y. Kim, S. Henrichs, A. Bailly, et al., J. Biol. Chem. 285 (2010) 23309–23317.

    31. [31]

      N. Geldner, J. Friml, Y.D. Stierhof, G. Jürgens, K. Palme, Nature 413 (2001) 425–428.

    32. [32]

      T. Nishimura, N. Matano, T. Morishima, et al., Cell. Physiol. 53 (2012) 1671–1682.  doi: 10.1093/pcp/pcs112

    33. [33]

      K. Fukui, K.I. Hayashi, Plant Cell Physiol. 59 (2018) 1500–1510.  doi: 10.1093/pcp/pcy076

    34. [34]

      E. Tsuda, H. Yang, T. Nishimura, et al., J. Biol. Chem. 286 (2011) 2354–2364.  doi: 10.1074/jbc.M110.171165

    35. [35]

      M. Lanková, R.S. Smith, B. Pesek, et al., J. Exp. Bot. 61 (2010) 3589–3598.  doi: 10.1093/jxb/erq172

    36. [36]

      W. Steenackers, I. El Houari, A. Baekelandt, et al., J. Exp. Bot. 70 (2019) 6293–6304.  doi: 10.1093/jxb/erz392

    37. [37]

      W. Steenackers, P. Klíma, M. Quareshy, et al., Plant Physiol. 173 (2017) 552–565.  doi: 10.1104/pp.16.00943

    38. [38]

      W. Steenackers, I. Cesarino, P. Klíma, et al., Plant Physiol. 172 (2016) 874–888.

    39. [39]

      B. Hartwig, G.V. James, K. Konrad, K. Schneeberger, F. Turck, Plant Physiol. 160 (2012) 591–600.  doi: 10.1104/pp.112.200311

    40. [40]

      K. Hayashi, X. Tan, N. Zheng, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 5632–5637.  doi: 10.1073/pnas.0711146105

    41. [41]

      K. Hayashi, J. Neve, M. Hirose, et al., ACS Chem. Biol. 7 (2012) 590–598.  doi: 10.1021/cb200404c

    42. [42]

      Y. Hu, L. Yang, X. Na, et al., Planta 236 (2012) 597–612.  doi: 10.1007/s00425-012-1632-z

    43. [43]

      A. Yamazoe, K. Hayashi, S. Kepinski, O. Leyser, H. Nozaki, Plant Physiol. 139 (2005) 779–789.  doi: 10.1104/pp.105.068924

    44. [44]

      R. Pelagio-Flores, R. Ortíz-Castro, A. Méndez-Bravo, et al., Plant Cell Physiol. 52 (2011) 490–508.  doi: 10.1093/pcp/pcr006

    45. [45]

      N. Uchida, K. Takahashi, R. Iwasaki, et al., Nat. Chem. Biol. 14 (2018) 299– 305.  doi: 10.1038/nchembio.2555

    46. [46]

      P. Sun, Y.Q. Huang, X.Y. Yang, A.J. Liao, J. Wu, Front. Plant Sci. 13 (2023) 1120613.

    47. [47]

      P. Sun, Y.Q. Huang, S.H. Chen, et al., Chin. Chem. Lett. 35 (2024) 109005.

    48. [48]

      M. Quareshy, J. Prusinska, M. Kieffer, et al., ACS Chem. Biol. 13 (2018) 2585–2594.  doi: 10.1021/acschembio.8b00527

    49. [49]

      B. Wybouw, B. De Rybel, Trends Plant Sci. 24 (2019) 177–185.

    50. [50]

      D. Kopecný, P. Briozzo, H. Popelková, et al., Biochimie 92 (2010) 1052–1062.

    51. [51]

      N. Murvanidze, J. Nisler, O. Leroux, S.P.O. Werbrouck, Plant Growth Regul. 94 (2021) 195–200.  doi: 10.1007/s10725-021-00708-6

    52. [52]

      J. Nisler, D. Kopečný, R. Končitíková, et al., Plant. Mol. Biol. 92 (2016) 235–248.  doi: 10.1007/s11103-016-0509-0

    53. [53]

      M. Zatloukal, M. Gemrotová, K. Dolezal, et al., Bioorg. Med. Chem. 16 (2008) 9268–9275.

    54. [54]

      M. J. van Voorthuizen, J. Song, O. Novák, P.E. Jameson, Plants 10 (2021) 2309.

    55. [55]

      L. Spíchal, T. Werner, I. Popa, et al., FEBS J. 276 (2009) 244–253.  doi: 10.1111/j.1742-4658.2008.06777.x

    56. [56]

      J. Nisler, M. Zatloukal, I. Popa, et al., Phytochemistry 71 (2010) 823–830.

    57. [57]

      Y. Arata, A. Nagasawa-Iida, H. Uneme, et al., Plant Cell Physiol. 51 (2010) 2047–2059.  doi: 10.1093/pcp/pcq163

    58. [58]

      M.S. Oshchepkov, A.V. Kalistratova, E.M. Savelieva, et al., Russ. Chem. Rev. 89 (2020) 787–810.  doi: 10.1070/rcr4921

    59. [59]

      R. Koprna, J.F. Humplík, Z. Spísek, et al., Agronomy-Basel 11 (2021) 15.

    60. [60]

      K. Podlešáková, D. Zalabák, M. Cudejková, et al., PLoS One 7 (2012) e39293.  doi: 10.1371/journal.pone.0039293

    61. [61]

      M. Bryksová, A. Hybenová, A.E. Hernándiz, et al., Front Plant Sci. 11 (2020) 599228.

    62. [62]

      E.M. Savelieva, A.A. Zenchenko, M.S. Drenichev, et al., Int. J. Mol. Sci. 23 (2022) 11334.  doi: 10.3390/ijms231911334

    63. [63]

      V. Mik, L. Szücová, L. Spíchal, et al., Bioorg. Med. Chem. 19 (2011) 7244–7251.

    64. [64]

      B. Zhang, H. Gao, G. Wang, et al., Front. Plant. Sci. 13 (2022) 1025634.

    65. [65]

      C. Liu, L. Bai, P. Cao, et al., J. Agric. Food Chem. 70 (2022) 16229–16240.  doi: 10.1021/acs.jafc.2c07072

    66. [66]

      E.M. Savelieva, B.V.E. Oslovsky, D.S. Karlov, et al., Phytochemistry 149 (2018) 161–177.

    67. [67]

      H. Iwamura, N. Masuda, K. Koshimizu, S. Matsubara, Phytochemistry 18 (1979) 217–222.

    68. [68]

      V. Matušková, M. Zatloukal, T. Pospíšil, et al., Phytochemistry 205 (2023) 113481.

    69. [69]

      A. Bajguz, A. Tretyn, Phytochemistry 62 (2003) 1027–1046.

    70. [70]

      J.W. Mitchell, N. Mandava, J.F. Worley, J.R. Plimmer, M.V. Smith, Nature 225 (1970) 1065–1066.  doi: 10.1038/2251065a0

    71. [71]

      C.J. Yang, C. Zhang, Y.N. Lu, J.Q. Jin, X.L. Wang, Mol. Plant 4 (2011) 588–600.  doi: 10.1093/mp/ssr020

    72. [72]

      M. Mizutani, D. Ohta, Annu. Rev. Plant Biol. 61 (2010) 291–315.  doi: 10.1146/annurev-arplant-042809-112305

    73. [73]

      T.G. Back, R.P. Pharis, J. Plant Growth Regul. 22 (2003) 350–361.

    74. [74]

      S. Takatsuto, N. Yazawa, N. Ikekawa, T. Morishita, H. Abe, Phytochemistry 22 (1983) 1393–1397.

    75. [75]

      M.A. Hussain, S. Fahad, R. Sharif, et al., Plant Growth Regul. 92 (2020) 141–156.

    76. [76]

      L.Y. Zou, M.H. Qu, L.J. Zeng, G.S. Xiong, Plant Growth Regul. 91 (2020) 263–276.  doi: 10.1007/s10725-020-00604-5

    77. [77]

      M.V. Diachkov, K. Ferrer, J. Oklestkova, et al., Int. J. Mol. Sci. 22 (2020) 155.  doi: 10.3390/ijms22010155

    78. [78]

      L.M. Mazorra, M. Núñez, M.C. Nápoles, et al., Plant Growth Regul. 44 (2004) 183–185.

    79. [79]

      M. Kvasnica, J. Oklestkova, V. Bazgier, et al., Org. Biomol. Chem. 14 (2016) 8691–8701.

    80. [80]

      S. Salazar-Cerezo, N. Martínez-Montiel, J. García-Sánchez, et al., Microbiol. Res. 208 (2018) 85–98.

    81. [81]

      Niharika, N.B. Singh, A. Singh, et al., Plant Mol. Biol. Rep. 39 (2021) 34–49.  doi: 10.1007/s11105-020-01231-0

    82. [82]

      Z.K. Yang, J.H. Xu, Y.M. Bai, et al., J. Plant Growth Regul. 41 (2022) 1845–1853.  doi: 10.1007/s00344-021-10425-z

    83. [83]

      S. Wang, H. Zhou, N. Feng, et al., J. Plant Physiol. 268 (2022) 153579.

    84. [84]

      I. Ahmad, S. Ahmad, X.N. Yang, et al., Plant Biol. 23 (2021) 485–496.  doi: 10.1111/plb.13235

    85. [85]

      H. Zhou, X. Liang, N. Feng, D. Zheng, D. Qi, Ecotoxicol. Environ. Saf. 224 (2021) 112619.

    86. [86]

      M. Waqas, C. Yaning, H. Iqbal, et al., J. Agron. Crop Sci. 203 (2017) 315–322.  doi: 10.1111/jac.12217

    87. [87]

      N.M. Kleczewski, C. Whaley, Crop Prot 104 (2018) 60–64.

    88. [88]

      J.A.K. Trethewey, M.P. Rolston, B.L. McCloy, R.J. Chynoweth, N. Z. J. Agric. Res. 59 (2016) 113–121.  doi: 10.1080/00288233.2015.1134590

    89. [89]

      N.L. Heckman, T.E. Elthon, G.L. Horst, R.E. Gaussoin, Crop Sci. 42 (2002) 423–427.

    90. [90]

      J.H. Grabber, Agron. J. 108 (2016) 726–735.  doi: 10.2134/agronj2015.0466

    91. [91]

      R. Zhang, D. Zheng, N. Feng, Q.S. Qiu, H. Zhou, F. Meng, X. Huang, A. Huang, Y. Li, PLoS One 18 (2023) e0279192.  doi: 10.1371/journal.pone.0279192

    92. [92]

      K. Murase, Y. Hirano, T.P. Sun, T. Hakoshima, Nature 456 (2008) 459–463.  doi: 10.1038/nature07519

    93. [93]

      K. Jiang, M. Otani, H. Shimotakahara, et al., Plant Physiol. 173 (2017) 825–835.  doi: 10.1104/pp.16.00937

    94. [94]

      J.D. Metzger, Weed Sci. 31 (1983) 285–289.  doi: 10.1017/s0043174500069010

    95. [95]

      W.W. Donald, R.A. Hoerauf, Weed Sci. 33 (1985) 894–902.

    96. [96]

      K. Jiang, J.W. Wang, S. Ito, et al., J. Plant Growth Regul. 42 (2023) 2637–2645.  doi: 10.1007/s00344-022-10733-y

    97. [97]

      K. Jiang, H. Shimotakahara, M. Luo, et al., Bioorg. Med. Chem. Lett. 27 (2017) 3678–3682.

    98. [98]

      T. Ariizumi, C.M. Steber, Plant Cell 19 (2007) 791–804.  doi: 10.1105/tpc.106.048009

    99. [99]

      C. Bergner, M. Lischewski, G. Adam, G. Sembdner, Planta 155 (1982) 231–237.

    100. [100]

      T. Ishida, B. Watanabe, K. Mashiguchi, S. Yamaguchi, Phytochem. Lett. 49 (2022) 162–166.

    101. [101]

      H. Tian, Y. Xu, S. Liu, et al., Molecules 22 (2017) 694.  doi: 10.3390/molecules22050694

    102. [102]

      Y.Y. Xiao, J.Y. Chen, J.F. Kuang, et al., J. Exp. Bot. 64 (2013) 2499–2510.  doi: 10.1093/jxb/ert108

    103. [103]

      W. Zhang, Y. Hu, J. Liu, et al., Saudi J. Biol. Sci. 27 (2020) 1667–1673.

    104. [104]

      Y. Liu, S. Chen, P. Wei, S. Guo, J. Wu, Front. Chem. 10 (2022) 967404.

    105. [105]

      B.P. Brookbank, J. Patel, S. Gazzarrini, E. Nambara, Genes 12 (2021) 1936.  doi: 10.3390/genes12121936

    106. [106]

      Q. Hao, P. Yin, C. Yan, et al., J. Biol. Chem. 285 (2010) 28946–28952.  doi: 10.1074/jbc.M110.149005

    107. [107]

      S. Han, Y. Lee, E.J. Park, et al., Plant Mol. Biol. 100 (2019) 319–333.  doi: 10.1007/s11103-019-00862-6

    108. [108]

      X.Q. Yuan, P. Yin, Q. Hao, et al., Plant Biol. 285 (2010) 28953–28958.  doi: 10.1074/jbc.M110.160192

    109. [109]

      M. Okamoto, F.C. Peterson, A. Defries, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 12132–12137.  doi: 10.1073/pnas.1305919110

    110. [110]

      F. Dupeux, J. Santiago, K. Betz, et al., EMBO J. 30 (2011) 4171–4184.  doi: 10.1038/emboj.2011.294

    111. [111]

      M. Cao, X. Liu, Y. Zhang, et al., Cell Res. 23 (2013) 1043–1054.  doi: 10.1038/cr.2013.95

    112. [112]

      A.S. Vaidya, F.C. Peterson, D. Yarmolinsky, et al., ACS Chem. Biol. 12 (2017) 2842–2848.  doi: 10.1021/acschembio.7b00650

    113. [113]

      A.S. Vaidya, J.D.M. Helander, F.C. Peterson, et al., Science 366 (2019) eaaw8848.

    114. [114]

      K. Nemoto, M. Kagawa, A. Nozawa, et al., Sci. Rep. 8 (2018) 4268.

    115. [115]

      J. Takeuchi, M. Okamoto, T. Akiyama, et al., Nat. Chem. Biol. 10 (2014) 477–482.  doi: 10.1038/nchembio.1524

    116. [116]

      R.W. Wilen, D.B. Hays, R.M. Mandel, S.R. Abrams, M.M. Moloney, Plant Physiol. 101 (1993) 469–476.  doi: 10.1104/pp.101.2.469

    117. [117]

      P.L. Rodriguez, J. Lozano-Juste, Trends Plant Sci. 20 (2015) 330–332.

    118. [118]

      J. Takeuchi, N. Mimura, M. Okamoto, et al., ACS Chem. Biol. 13 (2018) 1313–1321.  doi: 10.1021/acschembio.8b00105

    119. [119]

      Y. Ye, L. Zhou, X. Liu, et al., Plant Physiol. 173 (2017) 2356–2369.  doi: 10.1104/pp.16.01862

    120. [120]

      A.S. Vaidya, F.C. Peterson, J. Eckhardt, et al., Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2108281118.

    121. [121]

      X. Han, L. Jiang, C. Che, et al., Sci. Rep. 7 (2017) 43863.

    122. [122]

      N. Rajagopalan, K.M. Nelson, A.F. Douglas, et al., Biochemistry 55 (2016) 5155–5164.  doi: 10.1021/acs.biochem.6b00605

    123. [123]

      J. Takeuchi, T. Ohnishi, M. Okamoto, Y. Todoroki, Org. Biomol. Chem. 13 (2015) 4278–4288.

    124. [124]

      N.M. Irvine, P.A. Rose, A.J. Cutler, T.M. Squires, S.R. Abrams, Phytochemistry 53 (2000) 349–355.

    125. [125]

      J. Takeuchi, T. Ohnishi, M. Okamoto, Y. Todoroki, Bioorg. Med. Chem. Lett. 25 (2015) 3507–3510.

    126. [126]

      T. Liu, C.X. Li, J. Zhong, et al., Int. J. Mol. Sci. 22 (2021) 2555.  doi: 10.3390/ijms22052555

    127. [127]

      C.L. Benson, M. Kepka, C. Wunschel, et al., Phytochemistry 113 (2015) 96–107.

    128. [128]

      C. Che, Y. Zeng, Y. Xu, et al., J. Agric. Food Chem. 68 (2020) 8524–8534.  doi: 10.1021/acs.jafc.0c02154

    129. [129]

      C. Wan, Q. Hong, X. Zhang, et al., Agric. Food Chem. 67 (2019) 4995–5007.  doi: 10.1021/acs.jafc.8b07068

    130. [130]

      C. Wan, D.Y. Yang, R.Y. Liu, et al., J. Mol. Struct. 1249 (2022) 131650.

    131. [131]

      J. Takeuchi, S. Mimura, T. Ohnishi, Y. Todoroki, J. Agric. Food Chem. 70 (2022) 869–876.  doi: 10.1021/acs.jafc.1c06321

    132. [132]

      K. Yoshida, Y. Kondoh, T. Nakano, et al., ACS Chem. Biol. 16 (2021) 1566–1575.  doi: 10.1021/acschembio.1c00451

    133. [133]

      K. Ueno, H. Yoneyama, S. Saito, et al., Bioorg. Med. Chem. Lett. 15 (2005) 5226–5229.

    134. [134]

      K.A. Abu Safieh, A.K. Hasan, M.T. Ayoub, M.S. Mubarak, Res. Chem. Intermed. 41 (2015) 1863–1872.  doi: 10.1007/s11164-013-1315-9

    135. [135]

      K. Gomi, Int. J. Mol. Sci. 21 (2020) 1261.  doi: 10.3390/ijms21041261

    136. [136]

      J. Yan, S. Li, M. Gu, et al., Plant Physiol. 172 (2016) 2154–2164.  doi: 10.1104/pp.16.00906

    137. [137]

      Y. Hu, Y. Jiang, X. Han, et al., J. Exp. Bot. 68 (2017) 1361–1369.  doi: 10.1093/jxb/erx004

    138. [138]

      W. Zhang, S.X. Guo, L.J. Yu, et al., Chin. Chem. Lett. 34 (2023) 108123.

    139. [139]

      X.B. Wei, W.L. Guan, Y.J. Yang, Y.L. Shao, L.C. Mao, Postharvest Biol. Technol. 175 (2021) 111472.

    140. [140]

      Y. Li, L. Qiu, Q. Zhang, et al., Plant Direct 4 (2020) e00212.

    141. [141]

      J. Zhou, Z.F. Ran, X.T. Yang, J. Li, Molecules 24 (2019) 1462.  doi: 10.3390/molecules24081462

    142. [142]

      M. Ueda, T. Kaji, W. Kozaki, Int. J. Mol. Sci. 21 (2020) 1124.  doi: 10.3390/ijms21031124

    143. [143]

      M.M. Littleson, C.M. Baker, A.J. Dalençon, et al., Nat. Commun. 9 (2018) 1105.

    144. [144]

      S. Fonseca, A. Chini, M. Hamberg, et al., Nat. Chem. Biol. 5 (2009) 344–350.  doi: 10.1038/nchembio.161

    145. [145]

      L.B. Sheard, X. Tan, H. Mao, et al., Nature 468 (2010) 400–405.  doi: 10.1038/nature09430

    146. [146]

      Y.J. Wang, Z.H. Wang, S. Wang, et al., Acta Agric. Scand., Sect. B 70 (2020) 467–473.

    147. [147]

      M. Cui, K. Zhang, R. Wu, J. Du, J. Comput. Aided. Mol. Des. 36 (2022) 141–155.  doi: 10.1007/s10822-022-00441-w

    148. [148]

      Z.G. Qian, Z.J. Zhao, Y. Xu, X. Qian, J.J. Zhong, Appl. Microbiol. Biotechnol. 68 (2005) 98–103.  doi: 10.1007/s00253-004-1835-8

    149. [149]

      H. Kiyota, M. Saitoh, T. Oritani, T. Yoshihara, Phytochemistry 42 (1996) 1259–1262.

    150. [150]

      H. Kiyota, Y. Yoneta, T. Oritani, Phytochemistry 46 (1997) 983–986.

    151. [151]

      N. Kitaoka, E. Fukushi, Y. Koda, K. Nabeta, H. Matsuura, Biosci. Biotechnol. Biochem. 73 (2009) 1872–1876.  doi: 10.1271/bbb.90148

    152. [152]

      R.K. Pathak, M. Baunthiyal, R. Shukla, et al., Front Plant Sci. 8 (2017) 609.

    153. [153]

      R.J. Chesterfield, C.E. Vickers, C.A. Beveridge, Trends Plant Sci. 25 (2020) 1087–1106.

    154. [154]

      A. Bhoi, B. Yadu, J. Chandra, S. Keshavkant, Planta 254 (2021) 28.

    155. [155]

      I. Takahashi, H. Koishihara, T. Asami, J. Pestic. Sci. 47 (2022) 197–202.  doi: 10.1584/jpestics.d22-022

    156. [156]

      S. Ito, M. Umehara, A. Hanada, S. Yamaguchi, T. Asami, Plant Signal. Behav. 8 (2013) e24193.  doi: 10.4161/psb.24193

    157. [157]

      K. Kawada, I. Takahashi, M. Arai, et al., J. Agric. Food Chem. 67 (2019) 6143–6149.  doi: 10.1021/acs.jafc.9b01276

    158. [158]

      K. Kawada, Y. Uchida, I. Takahashi, et al., Molecules 25 (2020) 5525.  doi: 10.3390/molecules25235525

    159. [159]

      D. Wang, Z. Pang, H. Yu, et al., Nat. Commun. 13 (2022) 3987.

    160. [160]

      R. Yasui, Y. Seto, S. Ito, et al., Bioorg. Med. Chem. Lett. 29 (2019) 938–942.

    161. [161]

      I. Takahashi, T. Asami, J. Exp. Bot. 69 (2018) 2241–2254.  doi: 10.1093/jxb/ery126

    162. [162]

      J. Takeuchi, K. Jiang, K. Hirabayashi, et al., Plant Cell Physiol. 59 (2018) 1545–1554.  doi: 10.1093/pcp/pcy087

    163. [163]

      H. Nakamura, K. Hirabayashi, T. Miyakawa, et al., Mol. Plant 12 (2019) 44–58.

    164. [164]

      O. Mashita, H. Koishihara, K. Fukui, H. Nakamura, T. Asami, J. Pestic. Sci. 41 (2016) 71–78.

    165. [165]

      M. Yoshimura, S.F. Kim, R. Takise, et al., Chem. Commun. 56 (2020) 14917–14919.  doi: 10.1039/d0cc01989e

    166. [166]

      H. Xiang, R. Yao, T. Quan, et al., Cell Res. 27 (2017) 1525–1528.  doi: 10.1038/cr.2017.105

    167. [167]

      C. De Cuyper, J. Fromentin, R.E. Yocgo, et al., J. Exp. Bot. 66 (2015) 137–146.  doi: 10.1093/jxb/eru404

    168. [168]

      Y. Krasylenko, G. Komis, S. Hlynska, et al., Front. Plant Sci. 12 (2021) 675981.

    169. [169]

      M. Sedaghat, Y. Emam, A. Mokhtassi-Bidgoli, et al., Plants 10 (2021) 1223.  doi: 10.3390/plants10061223

    170. [170]

      C. Screpanti, R. Fonné-Pfister, A. Lumbroso, et al., Bioorg. Med. Chem. Lett. 26 (2016) 2392–2400.

    171. [171]

      B. Zwanenburg, A.S. Mwakaboko, C. Kannan, Pest Manag. Sci. 72 (2016) 2016–2025.  doi: 10.1002/ps.4222

    172. [172]

      H. Goossens, T.S.A. Heugebaert, B. Dereli, et al., Eur. J. Org. Chem. 2015 (2015) 1211–1217.  doi: 10.1002/ejoc.201403457

    173. [173]

      A.S. Mwakaboko, B. Zwanenburg, European J. Org. Chem. 2016 (2016) 3495–3499.  doi: 10.1002/ejoc.201600576

    174. [174]

      D. Blanco-Ania, J.J. Mateman, A. Hýlová, et al., Pest Manag. Sci. 75 (2019) 3113–3121.  doi: 10.1002/ps.5553

    175. [175]

      J.G. Zorrilla, A. Cala, C. Rial, et al., J. Agric. Food Chem. 68 (2020) 9636–9645.  doi: 10.1021/acs.jafc.0c02361

    176. [176]

      Y. Kang, Z. Pang, N. Xu, et al., J. Agric. Food Chem. 68 (2020) 11077–11087.  doi: 10.1021/acs.jafc.9b08044

    177. [177]

      S.D. Fornier, A. de Saint Germain, P. Retailleau, et al., J. Nat. Prod. 85 (2022) 1976–1992.  doi: 10.1021/acs.jnatprod.2c00282

  • 加载中
    1. [1]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    2. [2]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    5. [5]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    8. [8]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    12. [12]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    13. [13]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    14. [14]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    15. [15]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    16. [16]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    17. [17]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    18. [18]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    19. [19]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    20. [20]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

Metrics
  • PDF Downloads(1)
  • Abstract views(81)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return