Citation: Wen Zhong, Dan Zheng, Xukun Liao, Yadi Zhou, Yan Jiang, Ting Gao, Ming Li, Chengli Yang. Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae[J]. Chinese Chemical Letters, ;2025, 36(3): 110448. doi: 10.1016/j.cclet.2024.110448 shu

Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae

    * Corresponding authors.
    E-mail addresses: xlm3@yeah.net (M. Li), yangcl714@163.com (C. Yang).
    1 These authors contributed equally to this work.
  • Received Date: 26 June 2024
    Revised Date: 10 September 2024
    Accepted Date: 11 September 2024
    Available Online: 12 September 2024

Figures(5)

  • The escalation in the incidence of multidrug-resistant Gram-negative bacteria is becoming a pressing global concern. Polymyxin B (PMB), a conventional antibiotic with notable therapeutic efficacy against Gram-negative bacterial infections, serves as a crucial final recourse against carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. Nevertheless, the clinical usage of PMB is impeded by its pronounced nephrotoxicity and poor infection site targeting. This investigation is geared to construct a nanoparticle formulation (named HA-PMB@H) comprising hyaluronic acid (HA) and PMB via a simple Schiff base reaction and further coating HA by electrostatic action. HA-PMB@H shows an average size of (153.8 ± 24.3) nm, and a mean zeta potential of (−25.6 ± 5.2) mV. Additionally, PMB can be released from HA-PMB@H more thoroughly and efficiently at pH 5.5 compared to pH 7.4, which demonstrates the Schiff base modification of PMB paves the way for its release at focus of infection. The uptake ratio of HA-PMB@H by alveolar epithelial cells (RLE-6TN) surpassed that of free PMB devoid of HA, which facilitates to the intracellular sterilization of PMB. Furthermore, the employment of HA-PMB@H ameliorated the toxicity of PMB towards human embryonic kidney cells (HEK 293) and pulmonary microvascular endothelial cells (HULEC-5a). What is more, HA-PMB@H effectively managed severe pneumonia induced by CRKP samples from clinical patients diagnosed with CRKP infection in vivo, substantially enhancing the survival rate of mice. Consequently, this nano-delivery system holds promising clinical significance in the combat against drug-resistant bacterial infections.
  • 加载中
    1. [1]

      J.P. Mills, D. Marchaim, Infect. Dis. Clin. North Am. 35 (2021) 969–994.

    2. [2]

      C. Liu, K.C. Chen, Y.C. Wu, et al., Emerging Microb. Infect. 11 (2022) 1730–1741.  doi: 10.1080/22221751.2022.2093134

    3. [3]

      M. Huemer, S.M. Shambat, S.D. Brugger, A.S. Zinkernagel, EMBO Rep. 21 (2020) e51034.

    4. [4]

      M. Maeda, T. Hasegawa, H. Noma, E. Ota, BMJ Open 13 (2023) e069166.  doi: 10.1136/bmjopen-2022-069166

    5. [5]

      D.M. Tan, Y.Y. Zhang, M.J. Cheng, et al., Viruses 11 (2019) 1080.  doi: 10.3390/v11111080

    6. [6]

      G.Y. Wang, G. Zhao, X.Y. Chao, L.X. Xie, H.J. Wang, Int. J. Environ. Res. Public Health 17 (2020) 6278.  doi: 10.3390/ijerph17176278

    7. [7]

      C.R. Lee, J.H. Lee, K.S. Park, et al., Front. Cell. Infect. Microbiol. 7 (2017) 483.

    8. [8]

      W.J. Liao, Y. Liu, W. Zhang, J. Glob. Antimicrob. Resist. 23 (2020) 174–180.

    9. [9]

      Y.Y. Hu, C.C. Liu, Z.Q. Shen, et al., Emerg. Microb. Infect. 9 (2020) 1771–1779.  doi: 10.1080/22221751.2020.1799721

    10. [10]

      X.M. Yang, Q.L. Sun, J.P. Li, et al., Emerg. Microb. Infect. 11 (2022) 841–849.  doi: 10.1080/22221751.2022.2049458

    11. [11]

      C.M. Ernst, J.R. Braxton, D.T. Hung, et al., Nat. Med. 26 (2020) 705–711.  doi: 10.1038/s41591-020-0825-4

    12. [12]

      E. Durante-Mangoni, R. Andini, R. Zampino, Clin. Microbiol. Infect. 25 (2019) 943–950.

    13. [13]

      A. Goode, V. Yeh, B.B. Bonev, Faraday Dis. 232 (2021) 317–329.  doi: 10.1039/d1fd00036e

    14. [14]

      T.T. Tang, Y. Li, P. Xu, et al., Crit. Care 27 (2023) 164.

    15. [15]

      M.E. Falagas, M. Kyriakidou, K.S. Kechagias, et al., J. Glob. Antimicrob. Resist. 24 (2021) 342–359.

    16. [16]

      H.H. Zeng, Z.H. Zeng, X.L. Kong, et al., Front. Pharmacol. 11 (2020) 579069.

    17. [17]

      M.Y. Chai, Y.F. Gao, J. Liu, et al., Adv. Healthc. Mater. 9 (2020) e1901542.

    18. [18]

      Z.D. Li, J. Luo, L.H. Jia, et al., Hum. Exp. Toxicol. 38 (2019) 193–200.

    19. [19]

      A. Khondker, R.J. Alsop, A. Dhaliwal, et al., Biophys. J. 113 (2017) 2016–2028.

    20. [20]

      C. Yang, H. Hu, C. Qian, Y. Liao, J. Mater. Chem. A 11 (2023) 25899–25909.  doi: 10.1039/d3ta06192b

    21. [21]

      Y. Chen, Q. Zeng, B. Chu, et al., Chin. Chem. Lett. 34 (2023) 108133.

    22. [22]

      Q. Zeng, Z. Liu, T. Niu, et al., Chin. Chem. Lett. 34 (2023) 107747.

    23. [23]

      T. Kuang, L. Deng, S. Shen, et al., Chin. Chem. Lett. 34 (2023) 108584.

    24. [24]

      Y. Shi, Y. Wang, J. Bi, et al., Sci. China Mater. 66 (2023) 3319–3326.  doi: 10.1007/s40843-023-2476-5

    25. [25]

      C. Dai, L. Wang, X. You, et al., Chin. Chem. Lett. 36 (2025) 109869.  doi: 10.1016/j.cclet.2024.109869

    26. [26]

      H.Q. Zhang, S.L. Huang, X.Y. Yang, G.X. Zhai, Eur. J. Med. Chem. 86 (2014) 310–317.  doi: 10.1186/1029-242X-2014-310

    27. [27]

      C. Chircov, A.M. Grumezescu, L.E. Bejenaru, Rom. J. Morphol. Embryol. 59 (2018) 71–76.

    28. [28]

      Y.F. Jia, S.W. Chen, C.Y. Wang, T. Sun, L.Q. Yang, Front. Bioeng. Biotechnol. 10 (2022) 990145.

    29. [29]

      C. Yang, Y. Sheng, X. Shi, et al., Cell Death Dis. 11 (2020) 831.

    30. [30]

      S. Salathia, M.R. Gigliobianco, C. Casadidio, P. Di Martino, R. Censi, Int. J. Mol. Sci. 24 (2023) 7286.  doi: 10.3390/ijms24087286

    31. [31]

      P. Johnson, A. Maiti, K.L. Brown, R. Li, Biochem. Pharmacol. 59 (2000) 455–465.

    32. [32]

      E. Puré, C.A. Cuff, Trend. Mol. Med. 7 (2001) 213–221.

    33. [33]

      M. Krolikoski, J. Monslow, E. Puré, Matrix Biol. 78–79 (2019) 201–218.

    34. [34]

      J. Chen, J. Meng, X. Li, et al., Front. Immunol. 13 (2022) 875412.

    35. [35]

      S.M. Wu, C. Xu, Y.W. Zhu, et al., Adv. Funct. Mater. 12 (2021) 2103591.

    36. [36]

      Y.F. Gao, J. Wang, M.Y. Chai, et al., ACS Nano 14 (2020) 5686–5699.  doi: 10.1021/acsnano.0c00269

    37. [37]

      V. Ramanujam, C. Charlier, A. Bax, Angew. Chem. Int. Ed. 58 (2019) 15309–15312.  doi: 10.1002/anie.201908416

    38. [38]

      J. Xu, Y. Liu, S. Hsu, Molecules 24 (2019) 3005.  doi: 10.3390/molecules24163005

    39. [39]

      M. Mohammed, N. Devnarain, E. Elhassan, T. Govender, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14 (2022) e1799.

    40. [40]

      Y.D. Liu, D.M. Chen, A.X. Zhang, et al., Carbohydr. Polym. 252 (2021) 117162.

    41. [41]

      N. Yu, X. Wang, L. Qiu, et al., Chem. Eng. J. 380 (2020) 122582.

    42. [42]

      M. Kim, J.S. Lee, W. Kim, et al., J. Control. Release 348 (2022) 893–910.

    43. [43]

      X.L. Wu, W.M. Long, Q. Lu, J. Qu, Front. Pharmacol. 13 (2022) 672543.

  • 加载中
    1. [1]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    2. [2]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    3. [3]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    4. [4]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    5. [5]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    6. [6]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    7. [7]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    8. [8]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    9. [9]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    10. [10]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    11. [11]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    12. [12]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    13. [13]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    16. [16]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    17. [17]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    18. [18]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(0)
  • Abstract views(102)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return