Citation: Yujie Xie, Kexin Yuan, Beiyang Luo, Haoran Feng, Xian Bao, Jun Ma. Osmotic membranes for municipal wastewater reclamation: Insights into applications, transmembrane diffusion mechanisms and prospects[J]. Chinese Chemical Letters, ;2025, 36(7): 110443. doi: 10.1016/j.cclet.2024.110443 shu

Osmotic membranes for municipal wastewater reclamation: Insights into applications, transmembrane diffusion mechanisms and prospects

    * Corresponding author.
    E-mail address: baoxian24@163.com (X. Bao).
  • Received Date: 26 July 2024
    Revised Date: 7 September 2024
    Accepted Date: 10 September 2024
    Available Online: 11 September 2024

Figures(4)

  • With the global advancement of the circular economy, integrating reverse osmosis (RO) or forward osmosis (FO) with anaerobic membrane bioreactor (AnMBR) offers a promising approach to simultaneously generate high-grade reclaimed water, produce energy, and preserve valuable nutrients from municipal wastewater. However, the selectivity of these osmotic membranes towards ammonia nitrogen, a major component in municipal wastewater and anaerobic effluent, remains unsatisfactory due to its similar polarity and hydraulic radius to water molecules. Therefore, enhancing the ammonia nitrogen rejection of osmotic membranes is imperative to maximize the quality of reclaimed water and minimize the loss of ammonia nitrogen resources. Unfortunately, the current understanding of the mapping relationship between ammonia nitrogen transmembrane diffusion and the micro/nano-structure of osmotic membranes is not systematic, making precise optimization of the membranes challenging. Hence, this review comprehensively analyzed the diffusion behavior of ammonia nitrogen through osmotic membranes to lay the foundation for targeted regulation of membrane fine structure. Initially, the desire for ammonia/ammonium-rejecting membranes was highlighted by introducing current and promising osmotic membrane-based applications in municipal wastewater reclamation processes. Subsequently, the connection between the micro/nano-structure of osmotic membranes and the transmembrane diffusion behavior of ammonia nitrogen was explored by analyzing the effects of membrane characteristics on ammonia nitrogen transport using the DSPM-DE model. Finally, precise methods for modifying membranes to enhance ammonia nitrogen rejection were proposed. This review aims to offer theoretical insights guiding the development of RO and FO membranes with superior ammonia nitrogen rejection for efficient reclamation of municipal wastewater.
  • 加载中
    1. [1]

      T. Hülsen, E.M. Barry, Y. Lu, et al., Water Res. 100 (2016) 486–495.

    2. [2]

      K. Kümmerer, D.D. Dionysiou, O. Olsson, D. Fatta-Kassinos, Science 361 (2018) 222–224 (1979).

    3. [3]

      W.H. Luo, H.V. Phan, M. Xie, et al., Water Res. 109 (2017) 122–134.

    4. [4]

      G.L. Qiu, Y.M. Law, S. Das, Y.P. Ting, Environ. Sci. Technol. 49 (2015) 6156–6163.  doi: 10.1021/es504554f

    5. [5]

      A. Zirehpour, A. Rahimpour, A.A. Shamsabadi, et al., Environ. Sci. Technol. 51 (2017) 5511–5522.  doi: 10.1021/acs.est.7b00782

    6. [6]

      D. Wang, S. Chen, S. Lai, et al., Chin. Chem. Lett. 34 (2023) 107861.

    7. [7]

      G.T. Daigger, Water Environ. Res. 81 (2009) 809–823.

    8. [8]

      H. Furumai, Phys. Chem. Earth 33 (2008) 340–346.

    9. [9]

      L.R. Parsons, B. Sheikh, R. Holden, D.W. York, HortScience 45 (2010) 1626–1629.  doi: 10.21273/hortsci.45.11.1626

    10. [10]

      D.J. Batstone, T. Hülsen, C.M. Mehta, J. Keller, Chemosphere 140 (2015) 2–11.

    11. [11]

      P.R. Rout, M.K. Shahid, R.R. Dash, et al., J. Environ. Manage. 296 (2021) 113246.

    12. [12]

      T. Pan, X.D. Zhu, Y.P. Ye, Ecol. Eng. 37 (2011) 248–254.

    13. [13]

      I. Sharawat, R. Dahiya, R.P. Dahiya, Int. J. Environ. Sci. Technol. 18 (2021) 871–884.  doi: 10.1007/s13762-020-02893-9

    14. [14]

      J.W. Tang, C.H. Zhang, X.L. Shi, et al., J. Environ. Manage. 234 (2019) 396–403.

    15. [15]

      E. Ranieri, G. D'Onghia, L. Lopopolo, et al., J. Environ. Manage. 337 (2023) 117767.

    16. [16]

      J.D. Vela, L.B. Stadler, K.J. Martin, et al., Environ. Sci. Technol. Lett. 2 (2015) 234–244.

    17. [17]

      C.M. Mehta, W.O. Khunjar, V. Nguyen, et al., Crit. Rev. Environ. Sci. Technol. 45 (2015) 385–427.  doi: 10.1080/10643389.2013.866621

    18. [18]

      L. Miao, G.Q. Yang, T. Tao, Y.Z. Peng, J. Environ. Manage. 235 (2019) 178–185.

    19. [19]

      M. Wang, M.A. Khan, I. Mohsin, et al., Energy Environ. Sci. 14 (2021) 2535–2548.  doi: 10.1039/d0ee03808c

    20. [20]

      E. Debik, G. Kaykioglu, A. Coban, I. Koyuncu, Desalination 256 (2010) 174–180.

    21. [21]

      V. Stazi, M.C. Tomei, Sci. Total Environ. 635 (2018) 78–91.

    22. [22]

      X. Zhang, Y. Liu, Chem. Eng. J. 421 (2021) 127773.

    23. [23]

      G. Naidu, L. Tijing, M.A. Johir, et al., J. Membr. Sci. 599 (2020) 117832.

    24. [24]

      L. Chen, Y.S. Gu, C.Q. Cao, et al., Water Res. 50 (2014) 114–123.  doi: 10.4103/0973-1482.145816

    25. [25]

      J. Gu, H. Liu, S.Y. Wang, et al., J. Clean. Prod. 230 (2019) 1287–1293.

    26. [26]

      H. Liu, J. Gu, S. Wang, et al., J. Membr. Sci. 593 (2020) 117442.

    27. [27]

      S. Wang, H. Liu, J. Gu, et al., Chem. Eng. J. 375 (2019) 122078.

    28. [28]

      S. Wang, H. Liu, J. Gu, et al., Chemosphere 287 (2022) 132060.

    29. [29]

      Q. He, T. Tu, S. Yan, et al., Sep. Purif. Technol. 191 (2018) 182–191.

    30. [30]

      X. Bao, Q. She, W. Long, Q. Wu, Water Res. 190 (2021) 116678.

    31. [31]

      X. Zhang, J. Gu, Y. Liu, Water Res. 211 (2022) 118058.

    32. [32]

      Z. Zhuo, E. Du, N. Zhang, et al., Nat. Commun. 13 (2022) 3172.

    33. [33]

      B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, Desalination 326 (2013) 77–95.

    34. [34]

      X. Bao, Q.L. Wu, W.X. Shi, et al., J. Membr. Sci. 573 (2019) 135–144.

    35. [35]

      X. Bao, Q. Wu, W. Shi, et al., J. Membr. Sci. 584 (2019) 9–19.

    36. [36]

      R.R. Gonzales, Y. Sasaki, T. Istirokhatun, et al., Sep. Purif. Technol. 297 (2022) 121534.

    37. [37]

      J. Li, R.R. Gonzales, R. Takagi, et al., Desalination 541 (2022) 116002.

    38. [38]

      X. Yao, R.R. Gonzales, Y. Sasaki, et al., J. Membr. Sci. 650 (2022) 120429.

    39. [39]

      S. Manikandan, R. Subbaiya, M. Saravanan, et al., Chemosphere 289 (2022) 132867.

    40. [40]

      G.S. Arcanjo, C.R. Dos Santos, B.F. Cavalcante, et al., Chemosphere 301 (2022) 134716.

    41. [41]

      Y. Ye, H.H. Ngo, W. Guo, et al., Chemosphere 289 (2022) 133175.

    42. [42]

      D.L. Zhao, S. Japip, Y. Zhang, et al., Water Res. 173 (2020) 115557.

    43. [43]

      F. Wang, Z. Zhang, I. Shakir, et al., Adv. Sci. 9 (2022) 2103814.

    44. [44]

      H. Feng, K. Yuan, Y. Liu, et al., Chem. Eng. J. (2023) 145580.

    45. [45]

      S. Vinardell, S. Astals, J. Mata-Alvarez, J. Dosta, Bioresour. Technol. 297 (2020) 122395.

    46. [46]

      K. Arola, B. Van der Bruggen, M. Mänttäri, M. Kallioinen, Crit. Rev. Environ. Sci. Technol. 49 (2019) 2049–2116.  doi: 10.1080/10643389.2019.1594519

    47. [47]

      K. Häyrynen, E. Pongrácz, V. Väisänen, et al., Desalination 240 (2009) 280–289.

    48. [48]

      H.J. Qin, K.A. Kekre, G.H. Tao, et al., J. Membr. Sci. 272 (2006) 70–77.

    49. [49]

      N.A. Khan, S. Singh, E.A. López-Maldonado, et al., Desalination 565 (2023) 116873.

    50. [50]

      M. Xu, P. Zhao, C.Y. Tang, et al., Chin. Chem. Lett. 33 (2022) 3818–3822.

    51. [51]

      R.V. Linares, Z. Li, S. Sarp, et al., Water Res. 66 (2014) 122–139.

    52. [52]

      A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress, Desalination 239 (2009) 10–21.

    53. [53]

      G.L. Qiu, Y.P. Ting, Bioresour. Technol. 150 (2013) 287–297.

    54. [54]

      X.H. Wang, Y.X. Zhao, B. Yuan, et al., Bioresour. Technol. 202 (2016) 50–58.  doi: 10.1111/1744-7917.12226

    55. [55]

      Y. Gao, Z. Fang, C. Chen, et al., Bioresour. Technol. 307 (2020) 123254.

    56. [56]

      Y.S. Gu, L. Chen, J.W. Ng, et al., J. Membr. Sci. 490 (2015) 197–208.

    57. [57]

      M.K.Y. Tang, H.Y. Ng, Water Sci. Technol. 69 (2014) 2036–2042.  doi: 10.2166/wst.2014.116

    58. [58]

      Z.L. Cheng, X. Li, T.S. Chung, J. Membr. Sci. 559 (2018) 63–74.

    59. [59]

      Y. Gao, Z. Fang, P. Liang, X. Huang, Bioresour. Technol. 247 (2018) 730–735.

    60. [60]

      Y. Sun, J.Y. Tian, Z.W. Zhao, et al., Water Res. 104 (2016) 330–339.

    61. [61]

      S.Q. Zou, H.Y. Yuan, A. Childress, Z. He, Environ. Sci. Technol. 50 (2016) 6827–6829.  doi: 10.1021/acs.est.6b02849

    62. [62]

      Y.Y. Ye, H.H. Ngo, W.S. Guo, et al., Bioresour. Technol. 268 (2018) 749–758.

    63. [63]

      Y. Sun, Z. Chen, G. Wu, et al., J. Clean. Prod. 131 (2016) 1–9.

    64. [64]

      P.L. McCarty, J. Bae, J. Kim, Environ. Sci. Technol. 45 (2011) 7100–7106.  doi: 10.1021/es2014264

    65. [65]

      M.E. Martínez, S. Sánchez, J.M. Jiménez, et al., Bioresour. Technol. 73 (2000) 263–272.

    66. [66]

      K. Arola, M. Mänttäri, M. Kallioinen, Sep. Purif. Technol. 256 (2021) 117255.

    67. [67]

      P.L. McCarty, Environ. Sci. Technol. 52 (2018) 3835–3841.  doi: 10.1021/acs.est.7b05832

    68. [68]

      M.K.H. Winkler, L. Straka, Curr. Opin. Biotechnol. 57 (2019) 50–55.

    69. [69]

      J.J. Wang, B.C. Huang, J. Li, R.C. Jin, Chin. Chem. Lett. 31 (2020) 2567–2574.

    70. [70]

      J. Humphreys, R. Lan, S. Tao, Adv. Energy Sustain. Res. 2 (2021) 2000043.

    71. [71]

      H. Liu, S. Qin, A. Li, et al., Sci. Total Environ. 859 (2023) 160183.

    72. [72]

      Z. Lei, S.M. Yang, Y.Y. Li, et al., Bioresour. Technol. 267 (2018) 756–768.

    73. [73]

      A.J. Ansari, F.I. Hai, W.S. Guo, et al., Sci. Total Environ. 566 (2016) 559–566.

    74. [74]

      J. Wu, Z. Kong, Z. Luo, et al., Water Res. 207 (2021) 117783.

    75. [75]

      A. Aslam, S.J. Khan, H.M.A. Shahzad, Sci. Total Environ. 802 (2022) 149612.

    76. [76]

      M. Li, Z. Lv, J. Zheng, et al., ACS Sustain. Chem. Eng. 5 (2017) 784–792.  doi: 10.1021/acssuschemeng.6b02119

    77. [77]

      K. Almoalimi, Y.Q. Liu, J. Membr. Sci. 648 (2022) 120365.

    78. [78]

      D.R. Paul, J. Membr. Sci. 241 (2004) 371–386.

    79. [79]

      G. Mauviel, J. Berthiaud, U. Vallieres, et al., J. Membr. Sci. 266 (2005) 62–67.

    80. [80]

      R. Wang, S. Lin, J. Membr. Sci. 620 (2021) 118809.

    81. [81]

      Y. Yoon, R.M. Lueptow, J. Membr. Sci. 261 (2005) 76–86.

    82. [82]

      A. Tiraferri, M. Elimelech, J. Membr. Sci. 389 (2012) 499–508.

    83. [83]

      Q. Li, H. Liu, B. He, et al., J. Membr. Sci. 641 (2022) 119880.

    84. [84]

      Q. Li, H. Liu, Y. Ji, et al., Desalination 535 (2022) 115825.

    85. [85]

      M. Mänttäri, A. Pihlajamäki, M. Nyström, J. Membr. Sci. 280 (2006) 311–320.

    86. [86]

      N.T. Hancock, T.Y. Cath, Environ. Sci. Technol. 43 (2009) 6769–6775.  doi: 10.1021/es901132x

    87. [87]

      G.J. Irvine, S. Rajesh, M. Georgiadis, W.A. Phillip, Environ. Sci. Technol. 47 (2013) 13745–13753.  doi: 10.1021/es403581t

    88. [88]

      F.X. Kong, L.Q. Dong, T. Zhang, et al., Desalination 437 (2018) 144–153.

    89. [89]

      S.H. Kim, S.Y. Kwak, T. Suzuki, Environ. Sci. Technol. 39 (2005) 1764–1770.  doi: 10.1021/es049453k

    90. [90]

      R.R. Sharma, R. Agrawal, S. Chellam, J. Membr. Sci. 223 (2003) 69–87.

    91. [91]

      H. Liu, B. Li, P. Zhao, et al., Chin. Chem. Lett. 34 (2023) 108369.

    92. [92]

      J. Xu, T.N. Tran, H. Lin, N. Dai, Water Res. 185 (2020) 116255.

    93. [93]

      L. Wang, T.C. Cao, J.E. Dykstra, et al., Environ. Sci. Technol. 55 (2021) 16665–16675.  doi: 10.1021/acs.est.1c05649

    94. [94]

      P.M. Biesheuvel, L. Zhang, P. Gasquet, et al., Environ. Sci. Technol. Lett. 7 (2020) 42–47.  doi: 10.1021/acs.estlett.9b00686

    95. [95]

      Y. Baek, J. Kang, P. Theato, J. Yoon, Desalination 303 (2012) 23–28.

    96. [96]

      F. Pacheco, R. Sougrat, M. Reinhard, et al., J. Membr. Sci. 501 (2016) 33–44.

    97. [97]

      F.A. Pacheco, I. Pinnau, M. Reinhard, J.O. Leckie, J. Membr. Sci. 358 (2010) 51–59.

    98. [98]

      L.W. Huang, J.R. McCutcheon, J. Membr. Sci. 483 (2015) 25–33.

    99. [99]

      F.L. Usseglio-Viretta, D.P. Finegan, A. Colclasure, et al., J. Electrochem. Soc. 167 (2020) 100513.  doi: 10.1149/1945-7111/ab913b

    100. [100]

      K. Yuan, Y. Liu, H. Feng, et al., Chin. Chem. Lett. 35 (2024) 109022.

    101. [101]

      Z. Zhang, J. Hu, S. Liu, et al., Chin. Chem. Lett. 32 (2021) 2882–2886.

    102. [102]

      T.R. Nickerson, E.N. Antonio, D.P. McNally, et al., Chem. Sci. 14 (2023) 751–770.  doi: 10.1039/d2sc04920a

    103. [103]

      W.R. Bowen, J.S. Welfoot, Chem. Eng. Sci. 57 (2002) 1121–1137.

    104. [104]

      H.C. Zhu, F.R. Yang, Y.J. Zhu, et al., RSC Adv. 10 (2020) 8628–8635.  doi: 10.1039/c9ra09399k

    105. [105]

      A.E. Yaroshchuk, Adv. Colloid Interface Sci. 85 (2000) 193–230.

    106. [106]

      R. Epsztein, R.M. DuChanois, C.L. Ritt, et al., Nat. Nanotechnol. 15 (2020) 426–436.  doi: 10.1038/s41565-020-0713-6

    107. [107]

      J.J. Qin, M.H. Oo, M.N. Wai, F.S. Wong, J. Membr. Sci. 217 (2003) 261–268.

    108. [108]

      H. Zhang, B. Li, J. Pan, et al., J. Membr. Sci. 539 (2017) 128–137.

    109. [109]

      M.F. Tay, C. Liu, E.R. Cornelissen, et al., Water Res. 129 (2018) 180–189.

    110. [110]

      M. Elimelech, W.H. Chen, J.J. Waypa, Desalination 95 (1994) 269–286.

    111. [111]

      R.J. Petersen, J. Membr. Sci. 83 (1993) 81–150.

    112. [112]

      X.L. Lu, C. Boo, J. Ma, M. Elimelech, Environ. Sci. Technol. 48 (2014) 14369–14376.  doi: 10.1021/es504162v

    113. [113]

      Y.F. Huang, X.S. Feng, J. Membr. Sci. 586 (2019) 53–83.

    114. [114]

      Y. Song, Y. Wang, N. Zhang, et al., J. Membr. Sci. 630 (2021) 119332.

    115. [115]

      S. Zhao, M. Golestani, A. Penesyan, et al., Chin. Chem. Lett. 31 (2020) 851–854.

    116. [116]

      X. Bao, Q.L. Wu, W.X. Shi, et al., Water Res. 153 (2019) 1–10.

    117. [117]

      K.F. Gu, S.H. Wang, Y.H. Li, et al., J. Membr. Sci. 581 (2019) 214–223.

    118. [118]

      M.R. Adam, T. Matsuura, M.H.D. Othman, et al., Process Saf. Environ. Prot. 122 (2019) 378–385.

    119. [119]

      M.R. Adam, M.H.D. Othman, R. Abu Samah, et al., Sep. Purif. Technol. 213 (2019) 114–132.

  • 加载中
    1. [1]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    2. [2]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    3. [3]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    4. [4]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    5. [5]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    6. [6]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    7. [7]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    8. [8]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    9. [9]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    10. [10]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    11. [11]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    12. [12]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    13. [13]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    14. [14]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    15. [15]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    16. [16]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    17. [17]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    18. [18]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    19. [19]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    20. [20]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return